![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Calculate the wavelength in angstrom of the photon that is emitted when an electron in Bohr orbit n=2 returns to the orbit n=1 in the hydrogen atom. The ionization potential of the ground state of the hydrogen atom is \[2.17\times {{10}^{-11}}ergato{{m}^{-1}}\].
Answer
486.9k+ views
Hint: Bohr produces a set of postulates to explain the hydrogen atom. We know the energy difference between two energy levels is equal to the energy of a photon and its equation is given as $\Delta E=h\nu $ , where $\Delta E$ is the energy difference between two energy levels, h is the Planck’s constant and $\nu $ is the frequency.
Complete step by step solution:
In the question, we have to find the difference between two energy levels, which give the wavelength of the photon that is emitted. This is explained by using a formula called Rydberg formula.
\[E=R(\dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}})\] Here, \[n_{f}^{{}}\] is the final energy level, that is\[n_{f}^{{}}=2\]. And \[n_{i}^{{}}\]is the initial energy level, that is \[n_{i}^{{}}=1\] and E is the energy level and R is the Rydberg constant. So, For 2 energy levels${{E}_{2}}$ and ${{E}_{2}}$ .
\[{{E}_{2}}-{{E}_{1}}=-2.17\times {{10}^{-11}}(\dfrac{1}{4}-\dfrac{1}{1})\]=\[2.17\times {{10}^{-11}}\dfrac{3}{4}\]
Here, \[n_{f}^{{}}\]is the final energy level, that is \[n_{f}^{{}}=2\]. And \[n_{i}^{{}}\]is the initial energy level, that is \[n_{i}^{{}}=1\]
\[{{E}_{2}}-{{E}_{1}} = \Delta E=hv=\dfrac{c}{\lambda }h\]
We can write the above equation in another manner too based on wavelength.
\[\lambda = \dfrac{hc}{\Delta E}\]
Where, \[\lambda \]is the wavelength, h is the Planck’s constant, c is the velocity of light and \[\Delta E\] difference in energy levels. We know, \[h=6.62\times {{10}^{-27}}erg\], \[c=3\times {{10}^{10}}cm\] and \[\Delta E\] is given as\[2.17\times {{10}^{-11}}\dfrac{3}{4}\].
\[\lambda =\dfrac{6.62\times {{10}^{-27}}erg\times 3\times {{10}^{10}}cm}{2.17\times {{10}^{-11}}\dfrac{3}{4}} = \dfrac{2.648}{2.17}{{10}^{-5}}cm\]
$=1.22\times { 10 }^{ -5 }cm = 1220\mathring { A } $
Additional Information:
Niels Bohr produces the atomic Hydrogen model. In it he describes, a positively charged nucleus consists of protons and neutrons and is surrounded by negatively charged electron clouds. The atom is held together by electrostatic forces between the positively charged nucleus and negatively charged surrounding, that is electrons. The structure of hydrogen in Bohr’s model has energy levels.
Note: In the question, wavelength in angstrom is asked. We are calculating wavelength in centimetres. We should always see to it that it is converted to angstrom units. 1 Armstrong =${{10}^{-8}}$ centimetres.
Complete step by step solution:
In the question, we have to find the difference between two energy levels, which give the wavelength of the photon that is emitted. This is explained by using a formula called Rydberg formula.
\[E=R(\dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}})\] Here, \[n_{f}^{{}}\] is the final energy level, that is\[n_{f}^{{}}=2\]. And \[n_{i}^{{}}\]is the initial energy level, that is \[n_{i}^{{}}=1\] and E is the energy level and R is the Rydberg constant. So, For 2 energy levels${{E}_{2}}$ and ${{E}_{2}}$ .
\[{{E}_{2}}-{{E}_{1}}=-2.17\times {{10}^{-11}}(\dfrac{1}{4}-\dfrac{1}{1})\]=\[2.17\times {{10}^{-11}}\dfrac{3}{4}\]
Here, \[n_{f}^{{}}\]is the final energy level, that is \[n_{f}^{{}}=2\]. And \[n_{i}^{{}}\]is the initial energy level, that is \[n_{i}^{{}}=1\]
\[{{E}_{2}}-{{E}_{1}} = \Delta E=hv=\dfrac{c}{\lambda }h\]
We can write the above equation in another manner too based on wavelength.
\[\lambda = \dfrac{hc}{\Delta E}\]
Where, \[\lambda \]is the wavelength, h is the Planck’s constant, c is the velocity of light and \[\Delta E\] difference in energy levels. We know, \[h=6.62\times {{10}^{-27}}erg\], \[c=3\times {{10}^{10}}cm\] and \[\Delta E\] is given as\[2.17\times {{10}^{-11}}\dfrac{3}{4}\].
\[\lambda =\dfrac{6.62\times {{10}^{-27}}erg\times 3\times {{10}^{10}}cm}{2.17\times {{10}^{-11}}\dfrac{3}{4}} = \dfrac{2.648}{2.17}{{10}^{-5}}cm\]
$=1.22\times { 10 }^{ -5 }cm = 1220\mathring { A } $
Additional Information:
Niels Bohr produces the atomic Hydrogen model. In it he describes, a positively charged nucleus consists of protons and neutrons and is surrounded by negatively charged electron clouds. The atom is held together by electrostatic forces between the positively charged nucleus and negatively charged surrounding, that is electrons. The structure of hydrogen in Bohr’s model has energy levels.
Note: In the question, wavelength in angstrom is asked. We are calculating wavelength in centimetres. We should always see to it that it is converted to angstrom units. 1 Armstrong =${{10}^{-8}}$ centimetres.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)