Answer
Verified
462k+ views
Hint: Bohr produces a set of postulates to explain the hydrogen atom. We know the energy difference between two energy levels is equal to the energy of a photon and its equation is given as $\Delta E=h\nu $ , where $\Delta E$ is the energy difference between two energy levels, h is the Planck’s constant and $\nu $ is the frequency.
Complete step by step solution:
In the question, we have to find the difference between two energy levels, which give the wavelength of the photon that is emitted. This is explained by using a formula called Rydberg formula.
\[E=R(\dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}})\] Here, \[n_{f}^{{}}\] is the final energy level, that is\[n_{f}^{{}}=2\]. And \[n_{i}^{{}}\]is the initial energy level, that is \[n_{i}^{{}}=1\] and E is the energy level and R is the Rydberg constant. So, For 2 energy levels${{E}_{2}}$ and ${{E}_{2}}$ .
\[{{E}_{2}}-{{E}_{1}}=-2.17\times {{10}^{-11}}(\dfrac{1}{4}-\dfrac{1}{1})\]=\[2.17\times {{10}^{-11}}\dfrac{3}{4}\]
Here, \[n_{f}^{{}}\]is the final energy level, that is \[n_{f}^{{}}=2\]. And \[n_{i}^{{}}\]is the initial energy level, that is \[n_{i}^{{}}=1\]
\[{{E}_{2}}-{{E}_{1}} = \Delta E=hv=\dfrac{c}{\lambda }h\]
We can write the above equation in another manner too based on wavelength.
\[\lambda = \dfrac{hc}{\Delta E}\]
Where, \[\lambda \]is the wavelength, h is the Planck’s constant, c is the velocity of light and \[\Delta E\] difference in energy levels. We know, \[h=6.62\times {{10}^{-27}}erg\], \[c=3\times {{10}^{10}}cm\] and \[\Delta E\] is given as\[2.17\times {{10}^{-11}}\dfrac{3}{4}\].
\[\lambda =\dfrac{6.62\times {{10}^{-27}}erg\times 3\times {{10}^{10}}cm}{2.17\times {{10}^{-11}}\dfrac{3}{4}} = \dfrac{2.648}{2.17}{{10}^{-5}}cm\]
$=1.22\times { 10 }^{ -5 }cm = 1220\mathring { A } $
Additional Information:
Niels Bohr produces the atomic Hydrogen model. In it he describes, a positively charged nucleus consists of protons and neutrons and is surrounded by negatively charged electron clouds. The atom is held together by electrostatic forces between the positively charged nucleus and negatively charged surrounding, that is electrons. The structure of hydrogen in Bohr’s model has energy levels.
Note: In the question, wavelength in angstrom is asked. We are calculating wavelength in centimetres. We should always see to it that it is converted to angstrom units. 1 Armstrong =${{10}^{-8}}$ centimetres.
Complete step by step solution:
In the question, we have to find the difference between two energy levels, which give the wavelength of the photon that is emitted. This is explained by using a formula called Rydberg formula.
\[E=R(\dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}})\] Here, \[n_{f}^{{}}\] is the final energy level, that is\[n_{f}^{{}}=2\]. And \[n_{i}^{{}}\]is the initial energy level, that is \[n_{i}^{{}}=1\] and E is the energy level and R is the Rydberg constant. So, For 2 energy levels${{E}_{2}}$ and ${{E}_{2}}$ .
\[{{E}_{2}}-{{E}_{1}}=-2.17\times {{10}^{-11}}(\dfrac{1}{4}-\dfrac{1}{1})\]=\[2.17\times {{10}^{-11}}\dfrac{3}{4}\]
Here, \[n_{f}^{{}}\]is the final energy level, that is \[n_{f}^{{}}=2\]. And \[n_{i}^{{}}\]is the initial energy level, that is \[n_{i}^{{}}=1\]
\[{{E}_{2}}-{{E}_{1}} = \Delta E=hv=\dfrac{c}{\lambda }h\]
We can write the above equation in another manner too based on wavelength.
\[\lambda = \dfrac{hc}{\Delta E}\]
Where, \[\lambda \]is the wavelength, h is the Planck’s constant, c is the velocity of light and \[\Delta E\] difference in energy levels. We know, \[h=6.62\times {{10}^{-27}}erg\], \[c=3\times {{10}^{10}}cm\] and \[\Delta E\] is given as\[2.17\times {{10}^{-11}}\dfrac{3}{4}\].
\[\lambda =\dfrac{6.62\times {{10}^{-27}}erg\times 3\times {{10}^{10}}cm}{2.17\times {{10}^{-11}}\dfrac{3}{4}} = \dfrac{2.648}{2.17}{{10}^{-5}}cm\]
$=1.22\times { 10 }^{ -5 }cm = 1220\mathring { A } $
Additional Information:
Niels Bohr produces the atomic Hydrogen model. In it he describes, a positively charged nucleus consists of protons and neutrons and is surrounded by negatively charged electron clouds. The atom is held together by electrostatic forces between the positively charged nucleus and negatively charged surrounding, that is electrons. The structure of hydrogen in Bohr’s model has energy levels.
Note: In the question, wavelength in angstrom is asked. We are calculating wavelength in centimetres. We should always see to it that it is converted to angstrom units. 1 Armstrong =${{10}^{-8}}$ centimetres.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE