Answer
Verified
395.7k+ views
Hint: A mole of a substance or particle can be defined as containing exactly $6.02214076\times {{10}^{23}}$ particles which may be atoms, molecules or ions where $6.02214076\times {{10}^{23}}$ is known as the Avogadro’s number.
Complete answer:
Mole is generally represented by the symbol mol. It is generally described as the unit of measurement for amount of substance in SI where SI stands for International System of units. It is defined on the basis of Avogadro’s number.
To calculate that how much $C{{H}_{3}}OH$ in mg is obtained from 0.01 mol of $CO$and 0.08 g of ${{H}_{2}}$, we first have to write the chemical equation given in the question i.e.
$CO(g)+2{{H}_{2}}(g)\to C{{H}_{3}}OH(l)$
Here 1 mol of $CO$and 2 mol of ${{H}_{2}}$gives 1 mol of $C{{H}_{3}}OH$
This corresponds that 0.01 mol of $CO$ and 0.02 mol of ${{H}_{2}}$ gives 0.01 mol of $C{{H}_{3}}OH$
After that if we twice the value then 0.02 mol of $CO$ and 0.04 mol of ${{H}_{2}}$ gives 0.02 mol of $C{{H}_{3}}OH$ Given values are $CO$(g) = 0.01 mol , ${{H}_{2}}$(g) = 0.08 g which is equal to 0.04 mol as mentioned above.
Thus here $CO$(g) is a limiting agent.
Therefore, $C{{H}_{3}}OH$ formed = 0.01 mol = 0.32 g or 320 mg.
Note:
Limiting reagents are defined as those substances which are completely consumed in the completion of a chemical reaction and can also be known by the name limiting agents or limiting reactants. According to the stoichiometry of chemical reactions, a fixed amount of reactants is required for the completion of the reaction.
Complete answer:
Mole is generally represented by the symbol mol. It is generally described as the unit of measurement for amount of substance in SI where SI stands for International System of units. It is defined on the basis of Avogadro’s number.
To calculate that how much $C{{H}_{3}}OH$ in mg is obtained from 0.01 mol of $CO$and 0.08 g of ${{H}_{2}}$, we first have to write the chemical equation given in the question i.e.
$CO(g)+2{{H}_{2}}(g)\to C{{H}_{3}}OH(l)$
Here 1 mol of $CO$and 2 mol of ${{H}_{2}}$gives 1 mol of $C{{H}_{3}}OH$
This corresponds that 0.01 mol of $CO$ and 0.02 mol of ${{H}_{2}}$ gives 0.01 mol of $C{{H}_{3}}OH$
After that if we twice the value then 0.02 mol of $CO$ and 0.04 mol of ${{H}_{2}}$ gives 0.02 mol of $C{{H}_{3}}OH$ Given values are $CO$(g) = 0.01 mol , ${{H}_{2}}$(g) = 0.08 g which is equal to 0.04 mol as mentioned above.
Thus here $CO$(g) is a limiting agent.
Therefore, $C{{H}_{3}}OH$ formed = 0.01 mol = 0.32 g or 320 mg.
Note:
Limiting reagents are defined as those substances which are completely consumed in the completion of a chemical reaction and can also be known by the name limiting agents or limiting reactants. According to the stoichiometry of chemical reactions, a fixed amount of reactants is required for the completion of the reaction.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE