
Carbon monoxide ($CO$) and hydrogen (${{H}_{2}}$) react to form methanol ($C{{H}_{3}}OH$) according to the following reactions:
$CO(g)+2{{H}_{2}}(g)\to C{{H}_{3}}OH(l)$
How much $C{{H}_{3}}OH$ in mg is obtained from 0.01 mol of $CO$ and 0.08 g of ${{H}_{2}}$?
Answer
507k+ views
Hint: A mole of a substance or particle can be defined as containing exactly $6.02214076\times {{10}^{23}}$ particles which may be atoms, molecules or ions where $6.02214076\times {{10}^{23}}$ is known as the Avogadro’s number.
Complete answer:
Mole is generally represented by the symbol mol. It is generally described as the unit of measurement for amount of substance in SI where SI stands for International System of units. It is defined on the basis of Avogadro’s number.
To calculate that how much $C{{H}_{3}}OH$ in mg is obtained from 0.01 mol of $CO$and 0.08 g of ${{H}_{2}}$, we first have to write the chemical equation given in the question i.e.
$CO(g)+2{{H}_{2}}(g)\to C{{H}_{3}}OH(l)$
Here 1 mol of $CO$and 2 mol of ${{H}_{2}}$gives 1 mol of $C{{H}_{3}}OH$
This corresponds that 0.01 mol of $CO$ and 0.02 mol of ${{H}_{2}}$ gives 0.01 mol of $C{{H}_{3}}OH$
After that if we twice the value then 0.02 mol of $CO$ and 0.04 mol of ${{H}_{2}}$ gives 0.02 mol of $C{{H}_{3}}OH$ Given values are $CO$(g) = 0.01 mol , ${{H}_{2}}$(g) = 0.08 g which is equal to 0.04 mol as mentioned above.
Thus here $CO$(g) is a limiting agent.
Therefore, $C{{H}_{3}}OH$ formed = 0.01 mol = 0.32 g or 320 mg.
Note:
Limiting reagents are defined as those substances which are completely consumed in the completion of a chemical reaction and can also be known by the name limiting agents or limiting reactants. According to the stoichiometry of chemical reactions, a fixed amount of reactants is required for the completion of the reaction.
Complete answer:
Mole is generally represented by the symbol mol. It is generally described as the unit of measurement for amount of substance in SI where SI stands for International System of units. It is defined on the basis of Avogadro’s number.
To calculate that how much $C{{H}_{3}}OH$ in mg is obtained from 0.01 mol of $CO$and 0.08 g of ${{H}_{2}}$, we first have to write the chemical equation given in the question i.e.
$CO(g)+2{{H}_{2}}(g)\to C{{H}_{3}}OH(l)$
Here 1 mol of $CO$and 2 mol of ${{H}_{2}}$gives 1 mol of $C{{H}_{3}}OH$
This corresponds that 0.01 mol of $CO$ and 0.02 mol of ${{H}_{2}}$ gives 0.01 mol of $C{{H}_{3}}OH$
After that if we twice the value then 0.02 mol of $CO$ and 0.04 mol of ${{H}_{2}}$ gives 0.02 mol of $C{{H}_{3}}OH$ Given values are $CO$(g) = 0.01 mol , ${{H}_{2}}$(g) = 0.08 g which is equal to 0.04 mol as mentioned above.
Thus here $CO$(g) is a limiting agent.
Therefore, $C{{H}_{3}}OH$ formed = 0.01 mol = 0.32 g or 320 mg.
Note:
Limiting reagents are defined as those substances which are completely consumed in the completion of a chemical reaction and can also be known by the name limiting agents or limiting reactants. According to the stoichiometry of chemical reactions, a fixed amount of reactants is required for the completion of the reaction.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

