![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
How do you change $0.244444444$ into fraction?
Answer
432.6k+ views
Hint: We know that fraction represents equal parts of a whole or a collection. When we divide a whole into equal parts, each part is a fraction of the whole. We will assume as x. Then we will compute 10x. Subtracting 10x and x, we will be able to get the value of x. It will give us the fraction form.
Complete step-by-step answer:
Now, the given question is $0.244444444$. This expression is in the decimal form. Actually the decimal is a fraction written in a special form. It means we can easily express the fraction in the decimal form. Here we have to calculate the fraction form of the given $0.244444444$.
Now let $x=0.244444444$ $..........\left( 1 \right)$
And now multiply the above expression with $10$, then we get
$\Rightarrow 10x=2.44444444$ $.....\left( 2 \right)$
Now subtracting the equation (1) from equation (2), then we get
$\begin{align}
& \Rightarrow 10x-x=2.44444444-0.244444444 \\
& \Rightarrow 9x=2.2 \\
\end{align}$
Now write the above $2.2$ in a mixed fraction we get,
$\Rightarrow 9x=2\dfrac{2}{10}$
Now by more simplifying we get
$\begin{align}
& \Rightarrow x=\dfrac{2}{9}+\dfrac{2}{90} \\
& \Rightarrow x=\dfrac{20+2}{90} \\
& \Rightarrow x=\dfrac{22}{90} \\
\end{align}$
Now by more simplifying we get$\Rightarrow x=\dfrac{11}{45}$
Hence we get the fraction form of the given expression $0.244444444$ which is as $\dfrac{11}{45}$ .
Note: We can also solve the above expression by another method.
As we know $0.24$ is less than $1$ so the continued fraction starts with $0+\dfrac{1}{0.2\overset{.}{\mathop{4}}\,}$
Now calculate $\dfrac{1}{0.2\overset{.}{\mathop{4}}\,}$ which is equal to $4.\overset{.}{\mathop{0}}\,\overset{.}{\mathop{9}}\,$
So our continued fraction looks like$0+\dfrac{1}{4+\dfrac{1}{...}}$
Now subtract $4$ from the above fraction and then calculate $\dfrac{1}{0.\overset{.}{\mathop{0}}\,\overset{.}{\mathop{9}}\,}=11$
Now we get our fraction terminates here so we can write
$\Rightarrow 0+\dfrac{1}{4+\dfrac{1}{11}}$
Now solving the above fraction we get
$\Rightarrow \dfrac{1}{\dfrac{44+1}{11}}=\dfrac{1}{\dfrac{45}{11}}=\dfrac{11}{45}$
Here we get the same answer as we solved above. The fraction form of the given decimal expression $0.244444444$ is $\dfrac{11}{45}$.
Complete step-by-step answer:
Now, the given question is $0.244444444$. This expression is in the decimal form. Actually the decimal is a fraction written in a special form. It means we can easily express the fraction in the decimal form. Here we have to calculate the fraction form of the given $0.244444444$.
Now let $x=0.244444444$ $..........\left( 1 \right)$
And now multiply the above expression with $10$, then we get
$\Rightarrow 10x=2.44444444$ $.....\left( 2 \right)$
Now subtracting the equation (1) from equation (2), then we get
$\begin{align}
& \Rightarrow 10x-x=2.44444444-0.244444444 \\
& \Rightarrow 9x=2.2 \\
\end{align}$
Now write the above $2.2$ in a mixed fraction we get,
$\Rightarrow 9x=2\dfrac{2}{10}$
Now by more simplifying we get
$\begin{align}
& \Rightarrow x=\dfrac{2}{9}+\dfrac{2}{90} \\
& \Rightarrow x=\dfrac{20+2}{90} \\
& \Rightarrow x=\dfrac{22}{90} \\
\end{align}$
Now by more simplifying we get$\Rightarrow x=\dfrac{11}{45}$
Hence we get the fraction form of the given expression $0.244444444$ which is as $\dfrac{11}{45}$ .
Note: We can also solve the above expression by another method.
As we know $0.24$ is less than $1$ so the continued fraction starts with $0+\dfrac{1}{0.2\overset{.}{\mathop{4}}\,}$
Now calculate $\dfrac{1}{0.2\overset{.}{\mathop{4}}\,}$ which is equal to $4.\overset{.}{\mathop{0}}\,\overset{.}{\mathop{9}}\,$
So our continued fraction looks like$0+\dfrac{1}{4+\dfrac{1}{...}}$
Now subtract $4$ from the above fraction and then calculate $\dfrac{1}{0.\overset{.}{\mathop{0}}\,\overset{.}{\mathop{9}}\,}=11$
Now we get our fraction terminates here so we can write
$\Rightarrow 0+\dfrac{1}{4+\dfrac{1}{11}}$
Now solving the above fraction we get
$\Rightarrow \dfrac{1}{\dfrac{44+1}{11}}=\dfrac{1}{\dfrac{45}{11}}=\dfrac{11}{45}$
Here we get the same answer as we solved above. The fraction form of the given decimal expression $0.244444444$ is $\dfrac{11}{45}$.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The length and width of a rectangle are in ratio of class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The ratio of the income to the expenditure of a family class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you write 025 million in scientific notatio class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you convert 295 meters per second to kilometers class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write the following in Roman numerals 25819 class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What are the controls affecting the climate of Ind class 7 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The southernmost point of the Indian mainland is known class 7 social studies CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What were the major teachings of Baba Guru Nanak class 7 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What was the approximate time period of the Indus Valley class 7 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)