Answer
Verified
409.2k+ views
Hint: We know that fraction represents equal parts of a whole or a collection. When we divide a whole into equal parts, each part is a fraction of the whole. We will assume as x. Then we will compute 10x. Subtracting 10x and x, we will be able to get the value of x. It will give us the fraction form.
Complete step-by-step answer:
Now, the given question is $0.244444444$. This expression is in the decimal form. Actually the decimal is a fraction written in a special form. It means we can easily express the fraction in the decimal form. Here we have to calculate the fraction form of the given $0.244444444$.
Now let $x=0.244444444$ $..........\left( 1 \right)$
And now multiply the above expression with $10$, then we get
$\Rightarrow 10x=2.44444444$ $.....\left( 2 \right)$
Now subtracting the equation (1) from equation (2), then we get
$\begin{align}
& \Rightarrow 10x-x=2.44444444-0.244444444 \\
& \Rightarrow 9x=2.2 \\
\end{align}$
Now write the above $2.2$ in a mixed fraction we get,
$\Rightarrow 9x=2\dfrac{2}{10}$
Now by more simplifying we get
$\begin{align}
& \Rightarrow x=\dfrac{2}{9}+\dfrac{2}{90} \\
& \Rightarrow x=\dfrac{20+2}{90} \\
& \Rightarrow x=\dfrac{22}{90} \\
\end{align}$
Now by more simplifying we get$\Rightarrow x=\dfrac{11}{45}$
Hence we get the fraction form of the given expression $0.244444444$ which is as $\dfrac{11}{45}$ .
Note: We can also solve the above expression by another method.
As we know $0.24$ is less than $1$ so the continued fraction starts with $0+\dfrac{1}{0.2\overset{.}{\mathop{4}}\,}$
Now calculate $\dfrac{1}{0.2\overset{.}{\mathop{4}}\,}$ which is equal to $4.\overset{.}{\mathop{0}}\,\overset{.}{\mathop{9}}\,$
So our continued fraction looks like$0+\dfrac{1}{4+\dfrac{1}{...}}$
Now subtract $4$ from the above fraction and then calculate $\dfrac{1}{0.\overset{.}{\mathop{0}}\,\overset{.}{\mathop{9}}\,}=11$
Now we get our fraction terminates here so we can write
$\Rightarrow 0+\dfrac{1}{4+\dfrac{1}{11}}$
Now solving the above fraction we get
$\Rightarrow \dfrac{1}{\dfrac{44+1}{11}}=\dfrac{1}{\dfrac{45}{11}}=\dfrac{11}{45}$
Here we get the same answer as we solved above. The fraction form of the given decimal expression $0.244444444$ is $\dfrac{11}{45}$.
Complete step-by-step answer:
Now, the given question is $0.244444444$. This expression is in the decimal form. Actually the decimal is a fraction written in a special form. It means we can easily express the fraction in the decimal form. Here we have to calculate the fraction form of the given $0.244444444$.
Now let $x=0.244444444$ $..........\left( 1 \right)$
And now multiply the above expression with $10$, then we get
$\Rightarrow 10x=2.44444444$ $.....\left( 2 \right)$
Now subtracting the equation (1) from equation (2), then we get
$\begin{align}
& \Rightarrow 10x-x=2.44444444-0.244444444 \\
& \Rightarrow 9x=2.2 \\
\end{align}$
Now write the above $2.2$ in a mixed fraction we get,
$\Rightarrow 9x=2\dfrac{2}{10}$
Now by more simplifying we get
$\begin{align}
& \Rightarrow x=\dfrac{2}{9}+\dfrac{2}{90} \\
& \Rightarrow x=\dfrac{20+2}{90} \\
& \Rightarrow x=\dfrac{22}{90} \\
\end{align}$
Now by more simplifying we get$\Rightarrow x=\dfrac{11}{45}$
Hence we get the fraction form of the given expression $0.244444444$ which is as $\dfrac{11}{45}$ .
Note: We can also solve the above expression by another method.
As we know $0.24$ is less than $1$ so the continued fraction starts with $0+\dfrac{1}{0.2\overset{.}{\mathop{4}}\,}$
Now calculate $\dfrac{1}{0.2\overset{.}{\mathop{4}}\,}$ which is equal to $4.\overset{.}{\mathop{0}}\,\overset{.}{\mathop{9}}\,$
So our continued fraction looks like$0+\dfrac{1}{4+\dfrac{1}{...}}$
Now subtract $4$ from the above fraction and then calculate $\dfrac{1}{0.\overset{.}{\mathop{0}}\,\overset{.}{\mathop{9}}\,}=11$
Now we get our fraction terminates here so we can write
$\Rightarrow 0+\dfrac{1}{4+\dfrac{1}{11}}$
Now solving the above fraction we get
$\Rightarrow \dfrac{1}{\dfrac{44+1}{11}}=\dfrac{1}{\dfrac{45}{11}}=\dfrac{11}{45}$
Here we get the same answer as we solved above. The fraction form of the given decimal expression $0.244444444$ is $\dfrac{11}{45}$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE