Change in enthalpy when $11.2d{{m}^{3}}$ of $He$ at NTP is heated in a cylinder to ${{100}^{0}}C$ is (assume ideal behaviour)
Answer
Verified
463.5k+ views
Hint: The main answer to this question lies in the calculation of enthalpy change for a monatomic gas which is given by $\Delta H=n{{C}_{p}}\Delta T$and for a monatomic gas the value of ${{C}_{p}}=\dfrac{5}{2}R$
Complete step by step solution:
In our previous classes we have come across the concept of specific heat capacity of a substance in our physical chemistry part.
- Now, let us know the main criteria about it which includes the fact that specific heat capacity of a substance is measured as the ratio of heat capacity of sample of substance to that of mass of the sample.
- Specific heat capacity is denoted by the symbol${{C}_{p}}$ and this value varies with the temperature and is different for each state of matter.
- Now, the change in the enthalpy of a system as a function of temperature and heat capacity is given by the formula,
$\Delta H=n{{C}_{p}}\Delta T$
where,$\Delta H$ is the change in enthalpy of the system
n= number of moles of substance
${{C}_{p}}$ is the specific heat capacity
and $\Delta T$is the change in the temperature of the system
Since, in the question it is given as the system behaves ideally, the specific heat capacity of a monatomic gas that is Helium is given by the formula,
${{C}_{p}}=\dfrac{5}{2}R$
where, R is the real gas constant
According to the data given we have,
At NTP , the initial temperature is 273K
and the final temperature is ${{100}^{0}}C$=373K
Thus, $\Delta T$=373-273=100K
and $R=8.314Jmo{{l}^{-1}}{{K}^{-1}}$
Number of moles of gas is the ratio of given volume to 22.4L [As per NTP conditions]
Therefore,$n=\dfrac{11.2}{22.4}=0.5moles$
Thus substituting all these values in the enthalpy equation we get,
$\Delta H=0.2\times \dfrac{5}{2}\times 8.314\times 100$
\[\Rightarrow \Delta H=1039.25J\]
Thus, the correct answer is \[\Delta H=1039.25J\]
Note: Note that specific heat of a substance, especially gas is significantly higher when it is allowed to expand that is when heated compared to that when heated in a closed vessel (here cylinder) which prevents expansion and which has a constant volume. This will lead you to the correct guesses of answer.
Complete step by step solution:
In our previous classes we have come across the concept of specific heat capacity of a substance in our physical chemistry part.
- Now, let us know the main criteria about it which includes the fact that specific heat capacity of a substance is measured as the ratio of heat capacity of sample of substance to that of mass of the sample.
- Specific heat capacity is denoted by the symbol${{C}_{p}}$ and this value varies with the temperature and is different for each state of matter.
- Now, the change in the enthalpy of a system as a function of temperature and heat capacity is given by the formula,
$\Delta H=n{{C}_{p}}\Delta T$
where,$\Delta H$ is the change in enthalpy of the system
n= number of moles of substance
${{C}_{p}}$ is the specific heat capacity
and $\Delta T$is the change in the temperature of the system
Since, in the question it is given as the system behaves ideally, the specific heat capacity of a monatomic gas that is Helium is given by the formula,
${{C}_{p}}=\dfrac{5}{2}R$
where, R is the real gas constant
According to the data given we have,
At NTP , the initial temperature is 273K
and the final temperature is ${{100}^{0}}C$=373K
Thus, $\Delta T$=373-273=100K
and $R=8.314Jmo{{l}^{-1}}{{K}^{-1}}$
Number of moles of gas is the ratio of given volume to 22.4L [As per NTP conditions]
Therefore,$n=\dfrac{11.2}{22.4}=0.5moles$
Thus substituting all these values in the enthalpy equation we get,
$\Delta H=0.2\times \dfrac{5}{2}\times 8.314\times 100$
\[\Rightarrow \Delta H=1039.25J\]
Thus, the correct answer is \[\Delta H=1039.25J\]
Note: Note that specific heat of a substance, especially gas is significantly higher when it is allowed to expand that is when heated compared to that when heated in a closed vessel (here cylinder) which prevents expansion and which has a constant volume. This will lead you to the correct guesses of answer.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE