
Check injectivity and surjectivity of the following functions:
(1) \[f:N\to N\] given by \[f\left( x \right)={{x}^{2}}\]
(2) \[f:Z\to Z\] given by \[f\left( x \right)={{x}^{2}}\]
(3) \[f:R\to R\] given by \[f\left( x \right)={{x}^{2}}\]
(4) \[f:N\to N\] given by \[f\left( x \right)={{x}^{3}}\]
(5) \[f:Z\to Z\] given by \[f\left( x \right)={{x}^{3}}\]
Answer
502.5k+ views
Hint: A function is said to be injection if and only if every element in the domain has a unique image in its co-domain. A function is said to be surjective if each element of the co-domain is mapped by at least one element of the domain.
Complete step-by-step answer:
(1) \[f:N\to N\]given by \[f\left( x \right)={{x}^{2}}\]
Given \[f\left( x \right)={{x}^{2}}\]
To check whether it is a injectivity function or not the steps involved are
Calculate \[f\left( {{x}_{1}} \right)\]
Calculate \[f\left( {{x}_{2}} \right)\]
Putting \[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\]
We have to prove that \[{{x}_{1}}={{x}_{2}}\]
Checking one- one function or else called as injective function
\[f\left( {{x}_{1}} \right)={{x}_{1}}^{2}\]
\[f\left( {{x}_{2}} \right)={{x}_{2}}^{2}\]
\[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\]
\[{{x}_{1}}^{2}\]\[={{x}_{2}}^{2}\]
\[{{x}_{1}}={{x}_{2}}\]or \[{{x}_{1}}=-{{x}_{2}}\]
Since, \[{{x}_{1}}\] and \[{{x}_{2}}\] are natural numbers, they are always positive
Hence, \[{{x}_{1}}={{x}_{2}}\]
So, the given function is one-one (injective)
Checking onto function or else called as surjective
Let \[f(x)=y\], such that \[y\in N\]
\[{{x}^{2}}=y\]
\[x=\pm \sqrt{y}\]
\[y=2\]
\[x=\pm \sqrt{2}\]
Since, x is not a natural number the given function is not onto function.
So f is one-one function and not onto function.
(2) \[f:Z\to Z\]given by \[f\left( x \right)={{x}^{2}}\]
Given \[f\left( x \right)={{x}^{2}}\]
To check whether it is a injectivity function or not the steps involved are
(1) Calculate \[f\left( {{x}_{1}} \right)\]
(2) Calculate \[f\left( {{x}_{2}} \right)\]
(3) Putting \[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\]
We have to prove that \[{{x}_{1}}={{x}_{2}}\]
Checking one- one function or else called as injective function
\[f\left( {{x}_{1}} \right)={{x}_{1}}^{2}\]
\[f\left( {{x}_{2}} \right)={{x}_{2}}^{2}\]
\[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\]
\[{{x}_{1}}^{2}\]\[={{x}_{2}}^{2}\]
\[{{x}_{1}}={{x}_{2}}\]or \[{{x}_{1}}=-{{x}_{2}}\]
Since, \[{{x}_{1}}\]and \[{{x}_{2}}\] are integers numbers,
Hence, \[{{x}_{1}}\]does not have a unique image
\[f\left( -1 \right)=1\]
\[f\left( 1 \right)=1\]
So, the given function is not one-one (injective)
Checking onto function or else called surjective.
Let \[f(x)=y\], such that \[y\in Z\]
\[{{x}^{2}}=y\]
\[x=\pm \sqrt{y}\]
Note that y is an integer, it can be negative also
Putting y=-2
\[x=\pm \sqrt{-2}\]
Which is not possible because root of negative numbers s not defined
Hence x is not an integer
The given function is not an onto function.
So f is neither one-one function nor onto function.
(3) \[f:R\to R\]given by \[f\left( x \right)={{x}^{2}}\]
Given \[f\left( x \right)={{x}^{2}}\]
To check whether it is a injectivity function or not the steps involved are
(1) Calculate \[f\left( {{x}_{1}} \right)\]
(2)Calculate \[f\left( {{x}_{2}} \right)\]
(3) Putting \[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\]
We have to prove that \[{{x}_{1}}={{x}_{2}}\]
Checking one- one function or else called as injective function
\[f\left( {{x}_{1}} \right)={{x}_{1}}^{2}\]
\[f\left( {{x}_{2}} \right)={{x}_{2}}^{2}\]
\[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\]
\[{{x}_{1}}^{2}\]\[={{x}_{2}}^{2}\]
\[{{x}_{1}}={{x}_{2}}\]or \[{{x}_{1}}=-{{x}_{2}}\]
Since, \[{{x}_{1}}\] and \[{{x}_{2}}\] are real numbers,
Hence, \[{{x}_{1}}\] does not have a unique image
\[f\left( -1 \right)=1\]
\[f\left( 1 \right)=1\]
So, the given function is not one-one (injective)
Checking onto function or else called as surjective
Let \[f(x)=y\], such that \[y\in R\]
\[{{x}^{2}}=y\]
\[x=\pm \sqrt{y}\]
Note that y is a real number, it can be negative also
Putting y=-2
\[x=\pm \sqrt{-2}\]
Which is not possible because root of negative numbers s not defined
Hence x is not a real number
the given function is not onto function
so f is neither one-one function nor onto function
(4) \[f:N\to N\]given by \[f\left( x \right)={{x}^{3}}\]
Given \[f\left( x \right)={{x}^{3}}\]
Checking one-one or injective function
\[f\left( {{x}_{1}} \right)={{x}_{1}}^{3}\]
\[f\left( {{x}_{2}} \right)={{x}_{2}}^{3}\]
\[{{x}_{1}}={{x}_{2}}\]
Since, \[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\], then \[{{x}_{1}}={{x}_{2}}\]
Hence, it is one-one or injective function
Checking onto or surjective function
\[f\left( x \right)={{x}^{3}}\]
Let \[f(x)=y,y\in N\]
\[x={{y}^{\dfrac{1}{3}}}\]
Here y is a natural number
Let y=2
\[x={{2}^{\dfrac{1}{3}}}\]
So, x is not a natural number
So, the given function is not onto
So f is one-one function and not onto function.
(5)\[f:Z\to Z\]given by \[f\left( x \right)={{x}^{3}}\]
Given \[f\left( x \right)={{x}^{3}}\]
Checking one-one or injective function
\[f\left( {{x}_{1}} \right)={{x}_{1}}^{3}\]
\[f\left( {{x}_{2}} \right)={{x}_{2}}^{3}\]
\[{{x}_{1}}={{x}_{2}}\]
Since, \[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\], then \[{{x}_{1}}={{x}_{2}}\]
Hence, it is one-one or injective function
Checking onto or surjective function
\[f\left( x \right)={{x}^{3}}\]
Let \[f(x)=y,y\in Z\]
\[x={{y}^{\dfrac{1}{3}}}\]
Here y is an integer
Let y=2
\[x={{2}^{\dfrac{1}{3}}}\]
So, x is not an integer
So, the given function is not onto
So f is one-one function and not onto function.
Note: Injective function is also called as one-one function and surjective function is also called as onto function. A function is called a bijective function if it is both one-one and onto function, it is also called as bijection. Please check carefully whether the elements in domain has unique image or not and note the elements in domain and codomain to check whether it is one-one function or onto function
Complete step-by-step answer:
(1) \[f:N\to N\]given by \[f\left( x \right)={{x}^{2}}\]
Given \[f\left( x \right)={{x}^{2}}\]
To check whether it is a injectivity function or not the steps involved are
Calculate \[f\left( {{x}_{1}} \right)\]
Calculate \[f\left( {{x}_{2}} \right)\]
Putting \[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\]
We have to prove that \[{{x}_{1}}={{x}_{2}}\]
Checking one- one function or else called as injective function
\[f\left( {{x}_{1}} \right)={{x}_{1}}^{2}\]
\[f\left( {{x}_{2}} \right)={{x}_{2}}^{2}\]
\[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\]
\[{{x}_{1}}^{2}\]\[={{x}_{2}}^{2}\]
\[{{x}_{1}}={{x}_{2}}\]or \[{{x}_{1}}=-{{x}_{2}}\]
Since, \[{{x}_{1}}\] and \[{{x}_{2}}\] are natural numbers, they are always positive
Hence, \[{{x}_{1}}={{x}_{2}}\]
So, the given function is one-one (injective)
Checking onto function or else called as surjective
Let \[f(x)=y\], such that \[y\in N\]
\[{{x}^{2}}=y\]
\[x=\pm \sqrt{y}\]
\[y=2\]
\[x=\pm \sqrt{2}\]
Since, x is not a natural number the given function is not onto function.
So f is one-one function and not onto function.
(2) \[f:Z\to Z\]given by \[f\left( x \right)={{x}^{2}}\]
Given \[f\left( x \right)={{x}^{2}}\]
To check whether it is a injectivity function or not the steps involved are
(1) Calculate \[f\left( {{x}_{1}} \right)\]
(2) Calculate \[f\left( {{x}_{2}} \right)\]
(3) Putting \[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\]
We have to prove that \[{{x}_{1}}={{x}_{2}}\]
Checking one- one function or else called as injective function
\[f\left( {{x}_{1}} \right)={{x}_{1}}^{2}\]
\[f\left( {{x}_{2}} \right)={{x}_{2}}^{2}\]
\[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\]
\[{{x}_{1}}^{2}\]\[={{x}_{2}}^{2}\]
\[{{x}_{1}}={{x}_{2}}\]or \[{{x}_{1}}=-{{x}_{2}}\]
Since, \[{{x}_{1}}\]and \[{{x}_{2}}\] are integers numbers,
Hence, \[{{x}_{1}}\]does not have a unique image
\[f\left( -1 \right)=1\]
\[f\left( 1 \right)=1\]
So, the given function is not one-one (injective)
Checking onto function or else called surjective.
Let \[f(x)=y\], such that \[y\in Z\]
\[{{x}^{2}}=y\]
\[x=\pm \sqrt{y}\]
Note that y is an integer, it can be negative also
Putting y=-2
\[x=\pm \sqrt{-2}\]
Which is not possible because root of negative numbers s not defined
Hence x is not an integer
The given function is not an onto function.
So f is neither one-one function nor onto function.
(3) \[f:R\to R\]given by \[f\left( x \right)={{x}^{2}}\]
Given \[f\left( x \right)={{x}^{2}}\]
To check whether it is a injectivity function or not the steps involved are
(1) Calculate \[f\left( {{x}_{1}} \right)\]
(2)Calculate \[f\left( {{x}_{2}} \right)\]
(3) Putting \[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\]
We have to prove that \[{{x}_{1}}={{x}_{2}}\]
Checking one- one function or else called as injective function
\[f\left( {{x}_{1}} \right)={{x}_{1}}^{2}\]
\[f\left( {{x}_{2}} \right)={{x}_{2}}^{2}\]
\[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\]
\[{{x}_{1}}^{2}\]\[={{x}_{2}}^{2}\]
\[{{x}_{1}}={{x}_{2}}\]or \[{{x}_{1}}=-{{x}_{2}}\]
Since, \[{{x}_{1}}\] and \[{{x}_{2}}\] are real numbers,
Hence, \[{{x}_{1}}\] does not have a unique image
\[f\left( -1 \right)=1\]
\[f\left( 1 \right)=1\]
So, the given function is not one-one (injective)
Checking onto function or else called as surjective
Let \[f(x)=y\], such that \[y\in R\]
\[{{x}^{2}}=y\]
\[x=\pm \sqrt{y}\]
Note that y is a real number, it can be negative also
Putting y=-2
\[x=\pm \sqrt{-2}\]
Which is not possible because root of negative numbers s not defined
Hence x is not a real number
the given function is not onto function
so f is neither one-one function nor onto function
(4) \[f:N\to N\]given by \[f\left( x \right)={{x}^{3}}\]
Given \[f\left( x \right)={{x}^{3}}\]
Checking one-one or injective function
\[f\left( {{x}_{1}} \right)={{x}_{1}}^{3}\]
\[f\left( {{x}_{2}} \right)={{x}_{2}}^{3}\]
\[{{x}_{1}}={{x}_{2}}\]
Since, \[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\], then \[{{x}_{1}}={{x}_{2}}\]
Hence, it is one-one or injective function
Checking onto or surjective function
\[f\left( x \right)={{x}^{3}}\]
Let \[f(x)=y,y\in N\]
\[x={{y}^{\dfrac{1}{3}}}\]
Here y is a natural number
Let y=2
\[x={{2}^{\dfrac{1}{3}}}\]
So, x is not a natural number
So, the given function is not onto
So f is one-one function and not onto function.
(5)\[f:Z\to Z\]given by \[f\left( x \right)={{x}^{3}}\]
Given \[f\left( x \right)={{x}^{3}}\]
Checking one-one or injective function
\[f\left( {{x}_{1}} \right)={{x}_{1}}^{3}\]
\[f\left( {{x}_{2}} \right)={{x}_{2}}^{3}\]
\[{{x}_{1}}={{x}_{2}}\]
Since, \[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\], then \[{{x}_{1}}={{x}_{2}}\]
Hence, it is one-one or injective function
Checking onto or surjective function
\[f\left( x \right)={{x}^{3}}\]
Let \[f(x)=y,y\in Z\]
\[x={{y}^{\dfrac{1}{3}}}\]
Here y is an integer
Let y=2
\[x={{2}^{\dfrac{1}{3}}}\]
So, x is not an integer
So, the given function is not onto
So f is one-one function and not onto function.
Note: Injective function is also called as one-one function and surjective function is also called as onto function. A function is called a bijective function if it is both one-one and onto function, it is also called as bijection. Please check carefully whether the elements in domain has unique image or not and note the elements in domain and codomain to check whether it is one-one function or onto function
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
For Frost what do fire and ice stand for Here are some class 10 english CBSE

What did the military generals do How did their attitude class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

List three states in India where earthquakes are more class 10 physics CBSE

What did being free mean to Mandela as a boy and as class 10 english CBSE

Where did the fight between the two campaigns of Sambhaji class 10 social science CBSE
