Answer
Verified
496.2k+ views
Hint: Perform the given binary operation on the elements to check the condition of associativity and commutativity. Commutative property holds when for any two elements a and b, we have \[a*b=b*a\]. Associative property holds when for any three elements a, b and c, we have \[a*\left( b*c \right)=\left( a*b \right)*c\].
Complete step-by-step answer:
We have a binary operation \['*'\] defined on set of integers such that \[a*b=a+b+ab\] holds for all \[a,b\in \mathbb{Z}\]. We have to check the associativity and commutativity on this operation.
Commutative property holds when for any two elements a and b, we have \[a*b=b*a\].
We know that \[a*b=a+b+ab\].
We will evaluate the value of \[b*a\]. We have \[b*a=b+a+ba\].
We know that for any two integers a and b, commutativity holds for the operations addition and multiplication. Thus, we have \[a+b=b+a\] and \[ab=ba\].
So, we have \[b*a=b+a+ba=a+b+ab=a*b\].
Thus, commutative property holds for the binary relation \['*'\].
We will now check the associative property.
We will evaluate the value of \[a*\left( b*c \right)\] and \[\left( a*b \right)*c\].
We have \[\left( a*b \right)*c=(a+b+ab)*c=\left( a+b+ab \right)+c+\left( a+b+ab \right)c\].
Further simplifying the above equation, we have \[\left( a*b \right)*c=a+b+ab+c+ac+bc+abc\].
Thus, we have \[\left( a*b \right)*c=a+b+c+ac+bc+ab+abc\].
We now have \[a*\left( b*c \right)=a*\left( b+c+bc \right)=a+\left( b+c+bc \right)+a\left( b+c+bc \right)\].
Further simplifying the equation, we have \[a*\left( b*c \right)=a+b+c+bc+ab+ac+abc\].
Thus, we have \[a*\left( b*c \right)=a+b+c+ab+ac+bc+abc\].
We observe that \[a*\left( b*c \right)=\left( a*b \right)*c\].
Thus, the associative property holds as well.
Hence, commutativity and associativity both hold for the binary operation \['*'\].
Note: One must clearly know the definition of associativity and commutativity. Also, it’s necessary to know that addition and multiplication are associative and commutative on the set of integers. We need to use this property of addition and multiplication to check the associativity and commutativity of the given binary operation.
Complete step-by-step answer:
We have a binary operation \['*'\] defined on set of integers such that \[a*b=a+b+ab\] holds for all \[a,b\in \mathbb{Z}\]. We have to check the associativity and commutativity on this operation.
Commutative property holds when for any two elements a and b, we have \[a*b=b*a\].
We know that \[a*b=a+b+ab\].
We will evaluate the value of \[b*a\]. We have \[b*a=b+a+ba\].
We know that for any two integers a and b, commutativity holds for the operations addition and multiplication. Thus, we have \[a+b=b+a\] and \[ab=ba\].
So, we have \[b*a=b+a+ba=a+b+ab=a*b\].
Thus, commutative property holds for the binary relation \['*'\].
We will now check the associative property.
We will evaluate the value of \[a*\left( b*c \right)\] and \[\left( a*b \right)*c\].
We have \[\left( a*b \right)*c=(a+b+ab)*c=\left( a+b+ab \right)+c+\left( a+b+ab \right)c\].
Further simplifying the above equation, we have \[\left( a*b \right)*c=a+b+ab+c+ac+bc+abc\].
Thus, we have \[\left( a*b \right)*c=a+b+c+ac+bc+ab+abc\].
We now have \[a*\left( b*c \right)=a*\left( b+c+bc \right)=a+\left( b+c+bc \right)+a\left( b+c+bc \right)\].
Further simplifying the equation, we have \[a*\left( b*c \right)=a+b+c+bc+ab+ac+abc\].
Thus, we have \[a*\left( b*c \right)=a+b+c+ab+ac+bc+abc\].
We observe that \[a*\left( b*c \right)=\left( a*b \right)*c\].
Thus, the associative property holds as well.
Hence, commutativity and associativity both hold for the binary operation \['*'\].
Note: One must clearly know the definition of associativity and commutativity. Also, it’s necessary to know that addition and multiplication are associative and commutative on the set of integers. We need to use this property of addition and multiplication to check the associativity and commutativity of the given binary operation.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE