
Commercially available ${{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}$is $98\,{\text{g}}$by weight of${{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}$and $2\,{\text{g}}$by weight of water. Its density is ${\text{1}}{\text{.83}}\,{\text{g}}\,{\text{c}}{{\text{m}}^{ - 3}}$.Calculate the molality (m) of ${{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}$solution. (Take: molar mass of ${{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}$as${\text{98}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}$)
A. ${\text{500}}\,{\text{m}}$
B. ${\text{20}}\,{\text{m}}$
C. ${\text{50}}\,{\text{m}}$
D. ${\text{200}}\,{\text{m}}$
Answer
474k+ views
Hint: We can determine the number of mole of solute (sulphuric acid) by using the mole formula. Then the amount of solvent (water) in kg. Molality is defined as the mole of solute dissolved in one kg of the solvent.
We can use the formula:
${\text{Molality}}\,{\text{ = }}\,\dfrac{{{\text{Moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{kg of solvent}}}}$
${\text{Mole}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{{\text{Molar}}\,{\text{mass}}}}$
Complete Step by step answer: Determine the number of mole of sulphuric acid as follows:
${\text{Mole}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{{\text{Molar}}\,{\text{mass}}}}$
The molar mass of the sulphuric acid is ${\text{98}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}$.
Substitute ${\text{98}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}$ for molar mass and ${\text{98}}$gram for mass.
$\Rightarrow {\text{Mole}}\,{\text{ = }}\,\dfrac{{98\,{\text{g}}}}{{{\text{98}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}$
${\text{Mole}}\,{\text{ = }}\,1\,{\text{mol}}$
So, the mole of sulphuric acid is$1$.
Convert the amount of solvent form g to kg as follows:
$1000\,{\text{g}}\,{\text{ = }}\,{\text{1}}\,{\text{kg}}$
$\Rightarrow 2\,{\text{g}}\,{\text{ = }}\,0.002\,{\text{kg}}$
The formula of molality is as follows:
${\text{Molality}}\,{\text{ = }}\,\dfrac{{{\text{Moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{kg of solvent}}}}$
Substitute $1$ for moles of solute (sulphuric acid) and$0.002\,{\text{kg}}$for amount of solvent (water).
${\text{Molality}}\,{\text{ = }}\,\dfrac{{\,1\,{\text{mol}}}}{{\,0.\,002\,{\text{kg}}}}$
$\Rightarrow {\text{Molality}}\,{\text{ = }}\,500\,{\text{m}}$
So, the molality of sulphuric acid solution is $500\,{\text{m}}$.
Therefore, option (A) $500\,{\text{m}}$is correct.
Note: The amount of solute is taken in the form of a mole and the amount of the solvent is taken in kg. If the molar mass of the solute is not given, it can be calculated by adding the mass of each atom of the compound. The unit of molality is mol/kg so, it is necessary to convert the unit of solvent from g to kg. The unit of molality is represented by m. The capital ‘M’ represents the unit of molarity.
We can use the formula:
${\text{Molality}}\,{\text{ = }}\,\dfrac{{{\text{Moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{kg of solvent}}}}$
${\text{Mole}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{{\text{Molar}}\,{\text{mass}}}}$
Complete Step by step answer: Determine the number of mole of sulphuric acid as follows:
${\text{Mole}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{{\text{Molar}}\,{\text{mass}}}}$
The molar mass of the sulphuric acid is ${\text{98}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}$.
Substitute ${\text{98}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}$ for molar mass and ${\text{98}}$gram for mass.
$\Rightarrow {\text{Mole}}\,{\text{ = }}\,\dfrac{{98\,{\text{g}}}}{{{\text{98}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}$
${\text{Mole}}\,{\text{ = }}\,1\,{\text{mol}}$
So, the mole of sulphuric acid is$1$.
Convert the amount of solvent form g to kg as follows:
$1000\,{\text{g}}\,{\text{ = }}\,{\text{1}}\,{\text{kg}}$
$\Rightarrow 2\,{\text{g}}\,{\text{ = }}\,0.002\,{\text{kg}}$
The formula of molality is as follows:
${\text{Molality}}\,{\text{ = }}\,\dfrac{{{\text{Moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{kg of solvent}}}}$
Substitute $1$ for moles of solute (sulphuric acid) and$0.002\,{\text{kg}}$for amount of solvent (water).
${\text{Molality}}\,{\text{ = }}\,\dfrac{{\,1\,{\text{mol}}}}{{\,0.\,002\,{\text{kg}}}}$
$\Rightarrow {\text{Molality}}\,{\text{ = }}\,500\,{\text{m}}$
So, the molality of sulphuric acid solution is $500\,{\text{m}}$.
Therefore, option (A) $500\,{\text{m}}$is correct.
Note: The amount of solute is taken in the form of a mole and the amount of the solvent is taken in kg. If the molar mass of the solute is not given, it can be calculated by adding the mass of each atom of the compound. The unit of molality is mol/kg so, it is necessary to convert the unit of solvent from g to kg. The unit of molality is represented by m. The capital ‘M’ represents the unit of molarity.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
