Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Consider a polynomial as f(x)=x4+ax3+bx2+cx+d, such that, f(1)=10,f(2)=20,f(3)=30, then the value of f(12)+f(8)10 is equal to
A.2018
B.1984
C.60
D.600

Answer
VerifiedVerified
511.2k+ views
like imagedislike image
Hint:Substitute the values of x=1,2,3 in f(x)=x4+ax3+bx2+cx+d then we get three equations in a, b, c & d. Now, substitute the values of x=12,8 in f(x)=x4+ax3+bx2+cx+d to get f(12)&f(8) and then substitute these values in the relation f(12)+f(8)10. Simplify this expression by eliminating a, b, c & d.

Complete step-by-step answer:
It is given that:
f(x)=x4+ax3+bx2+cx+d
Substituting x=1 in the above equation we get,
f(1)=1+a+b+c+d
It is given that f(1)=10 so equating the above equation to 10 we get,
f(1)=1+a+b+c+d=10a+b+c+d=9.......Eq.(1)
Substituting x=2 in the given equation in f(x) we get,
f(2)=16+8a+4b+2c+d
It is given that f(2)=20 so equating the above equation to 20 we get,
f(2)=16+8a+4b+2c+d=208a+4b+2c+d=4........Eq.(2)
Substituting x=3 in the given equation in f(x) we get,
f(3)=81+27a+9b+3c+d
It is given that f(3)=30 so equating the above equation to 30 we get,
f(3)=81+27a+9b+3c+d=3027a+9b+3c+d=51........Eq.(3)
From the above we have got three equations,
a+b+c+d=9........Eq.(1)8a+4b+2c+d=4........Eq.(2)27a+9b+3c+d=51........Eq.(3)
Rewriting the eq. (1) we get,
d=9(a+b+c)
Substituting the above value of “d” in eq. (2) and eq. (3) we get,
8a+4b+2c+9(a+b+c)=47a+3b+c=5..........Eq.(4)
27a+9b+3c+9(a+b+c)=5126a+8b+2c=6013a+4b+c=30........Eq.(5)
Subtracting eq. (5) from eq. (4) we get,
 7a+3b+c=5(13a+4b+c=30)6ab=25
Taking -1 common from the left hand side of the above equation we get,
1(6a+b)=25
6a+b=25.......Eq.(6)
Solving this relation f(12)+f(8)10 we are required to find the values of f(12)&f(8).
f(12)=(12)4+a(12)3+b(12)2+c(12)+d
f(8)=(8)4+a(8)3+b(8)28c+d
Substituting the above values in f(12)+f(8)10 we get,
(12)4+(8)4+a[(12)3(8)3]+b[(12)2+(8)2+4c+2d]1020736+4096+a(1728512)+b(208)+4c+2d1024832+a(1216)+b(208)+4c+2d1024832+a(1216)+b(208)+2(2c+d)10......Eq.(7)
From eq. (2) we can find the value of 2c + d.
8a+4b+2c+d=4
Rearranging the above equation we get,
2c+d=4(8a+4b)
Substituting the above value in eq. (7) we get,
24832+a(1216)+b(208)+2(2c+d)1024832+a(1216)+b(208)+2(4(8a+4b))1024840+a(1216)+b(208)+816a8b102484+1200a+200b102484+20(6a+b)
Substituting the value of (6a+b) from eq. (6) in the above equation we get,
6a+b=25
2484+20(25)=2484500=1984
From the above solution, we have solved the value of f(12)+f(8)10 as 1984.
Hence, the correct option is (b).

Note: This question demands a good command on rearrangement of a, b, c and d to get the required result of the given relation f(12)+f(8)10. The value of 6a+b is known, so students must perform rearrangements so as to be able to use it in the final expression. Be careful about the calculations in this problem, you might make silly mistakes in addition, subtraction, multiplication and division while solving the algebraic expressions. If a student goes wrong at any step, then the final result will be affected.
Latest Vedantu courses for you
Grade 9 | CBSE | SCHOOL | English
Vedantu 9 CBSE Pro Course - (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for CBSE students
PhysicsPhysics
Social scienceSocial science
BiologyBiology
ChemistryChemistry
EnglishEnglish
MathsMaths
₹38,500 (9% Off)
₹35,000 per year
EMI starts from ₹2,916.67 per month
Select and buy