
Consider $f:\left\{ 1,2,3 \right\}\to \left\{ a,b,c \right\}$ and $g:\left\{ a,b,c \right\}\to \left\{ apple,ball,cat \right\}$ defined as $f(1)=a,f(2)=b,f(3)=c,g(a)=apple,g(b)=ball,g(c)=cat$ . Show that $f,g,g\circ f$ are invertible. Find ${{f}^{-1}},{{g}^{-1}}$ and ${{\left( g\circ f \right)}^{-1}}$ . Show that ${{\left( g\circ f \right)}^{-1}}={{f}^{-1}}\circ {{g}^{-1}}$ .
Answer
520.8k+ views
Hint: At first we have to check if the functions $f,g$ are one to one and onto or not. A function is invertible only if the function is both one to one and onto.
Complete step-by-step answer:
The function f is defined as:
$f:\left\{ 1,2,3 \right\}\to \left\{ a,b,c \right\}$.
$f(1)=a,f(2)=b,f(3)=c$ .
Here $\left\{ 1,2,3 \right\}$ is the domain of the function f. $\left\{ a,b,c \right\}$ is the codomain of the function f.
We know that a function is said to be one to one if every different element of the domain has different images.
Here image of 1 is a. Image of 2 is b. Image of 3 is c. Therefore, every different element of the domain has a different image. Hence, f is one to one.
We know that a function is said to be onto if for every element of the codomain, we can find out at least one preimage from the domain.
The preimage of a is 1. Preimage of b is 2. Preimage of c is 3.
Therefore, every element of the codomain has a preimage. Hence, f is a onto function.
Therefore, f is both one to one and onto. So, f is invertible.
Similarly, the function g is defined as:
$g:\left\{ a,b,c \right\}\to \left\{ apple,ball,cat \right\}$
$g(a)=apple, g(b)=ball, g(c)=cat$
Here $\left\{ a,b,c \right\}$ is the domain of the function. $\left\{ apple,ball,cat \right\}$ is the codomain of the function.
The function g is one to one as image of a is apple, image of b is ball, image of c is cat. Therefore every element of the domain has a different image.
The function g is onto as preimage of apple is a, preimage of ball is b, preimage of cat is c. Therefore every element of the codomain has one preimage in the domain.
Hence, g is both one to one and onto. So, g is invertible.
Now, $(g\circ f):\left\{ 1,2,3 \right\}\to \left\{ apple,ball,cat \right\}$ is defined as:
As $\left( g\circ f \right)\left( 1 \right)=g\left( f\left( 1 \right) \right)=g\left( a \right)=apple$
$\begin{align}
& (g\circ f)(2)=g\left( f\left( 2 \right) \right)=g(b)=ball \\
& (g\circ f)(3)=g\left( f\left( 3 \right) \right)=g(c)=cat \\
\end{align}$
$g\circ f$ is one to one as every element of the domain $\left\{ 1,2,3 \right\}$ has different image.
$g\circ f$ is onto as every element of the codomain $\left\{ apple,ball,cat \right\}$ has a preimage in the domain.
Therefore $g\circ f$ is invertible.
We know that if a function $f$ maps one element $x$ to $y$, then the inverse function maps the image $y$ to $x$. That is:
$f\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x$
Therefore,
$\begin{align}
& f(1)=a\Rightarrow {{f}^{-1}}\left( a \right)=1 \\
& f(2)=b\Rightarrow {{f}^{-1}}\left( b \right)=2 \\
& f(3)=c\Rightarrow {{f}^{-1}}\left( c \right)=3 \\
\end{align}$
Hence,
${{f}^{-1}}:\left\{ a,b,c \right\}\to \left\{ 1,2,3 \right\}$ , such that:
${{f}^{-1}}\left( a \right)=1,{{f}^{-1}}\left( b \right)=2,{{f}^{-1}}\left( c \right)=3$
Similarly,
$\begin{align}
&g\left( a \right)=apple\Rightarrow {{g}^{-1}}\left( apple \right)=a \\
&g\left( b \right)=ball\Rightarrow {{g}^{-1}}\left( ball \right)=b \\
&g\left( c \right)=cat\Rightarrow {{g}^{-1}}\left( cat \right)=c \\
\end{align}$
Therefore,
${{g}^{-1}}:\left\{ apple,ball,cat \right\}\to \left\{ a,b,c \right\}$ , such that:
$\begin{align}
& {{g}^{-1}}(apple)=a \\
& {{g}^{-1}}\left( ball \right)=b \\
& {{g}^{-1}}\left( cat \right)=c \\
\end{align}$
Similarly,
$\begin{align}
& \left( g\circ f \right)\left( 1 \right)=apple\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( apple \right)=1 \\
& \left( g\circ f \right)\left( 2 \right)=ball\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( ball \right)=2 \\
& \left( g\circ f \right)\left( 3 \right)=cat\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( cat \right)=3 \\
\end{align}$
Therefore,
${{\left( g\circ f \right)}^{-1}}:\left\{ apple,ball,cat \right\}\to \left\{ 1,2,3 \right\}$ , such that:
$\begin{align}
& {{\left( g\circ f \right)}^{-1}}\left( apple \right)=1 \\
& {{\left( g\circ f \right)}^{-1}}\left( ball \right)=b \\
& {{\left( g\circ f \right)}^{-1}}\left( cat \right)=c \\
\end{align}$
Now,
$\begin{align}
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( apple \right)={{f}^{-1}}\left( {{g}^{-1}}\left( apple \right) \right)={{f}^{-1}}\left( a \right)=1 \\
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( ball \right)={{f}^{-1}}\left( {{g}^{-1}}\left( ball \right) \right)={{f}^{-1}}\left( b \right)=2 \\
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( cat \right)={{f}^{-1}}\left( {{g}^{-1}}\left( cat \right) \right)={{f}^{-1}}\left( c \right)=3 \\
& \\
\end{align}$
Therefore,
$\begin{align}
& {{\left( g\circ f \right)}^{-1}}\left( apple \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( apple \right) \\
& {{\left( g\circ f \right)}^{-1}}\left( ball \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( ball \right) \\
& {{\left( g\circ f \right)}^{-1}}\left( cat \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( cat \right) \\
\end{align}$
Hence, ${{\left( g\circ f \right)}^{-1}}=\left( {{f}^{-1}}\circ {{g}^{-1}} \right)$
Note: We generally make mistakes to find out the inverse function. Always remember:
$f\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x$
Complete step-by-step answer:
The function f is defined as:
$f:\left\{ 1,2,3 \right\}\to \left\{ a,b,c \right\}$.
$f(1)=a,f(2)=b,f(3)=c$ .
Here $\left\{ 1,2,3 \right\}$ is the domain of the function f. $\left\{ a,b,c \right\}$ is the codomain of the function f.
We know that a function is said to be one to one if every different element of the domain has different images.
Here image of 1 is a. Image of 2 is b. Image of 3 is c. Therefore, every different element of the domain has a different image. Hence, f is one to one.
We know that a function is said to be onto if for every element of the codomain, we can find out at least one preimage from the domain.
The preimage of a is 1. Preimage of b is 2. Preimage of c is 3.
Therefore, every element of the codomain has a preimage. Hence, f is a onto function.
Therefore, f is both one to one and onto. So, f is invertible.
Similarly, the function g is defined as:
$g:\left\{ a,b,c \right\}\to \left\{ apple,ball,cat \right\}$
$g(a)=apple, g(b)=ball, g(c)=cat$
Here $\left\{ a,b,c \right\}$ is the domain of the function. $\left\{ apple,ball,cat \right\}$ is the codomain of the function.
The function g is one to one as image of a is apple, image of b is ball, image of c is cat. Therefore every element of the domain has a different image.
The function g is onto as preimage of apple is a, preimage of ball is b, preimage of cat is c. Therefore every element of the codomain has one preimage in the domain.
Hence, g is both one to one and onto. So, g is invertible.
Now, $(g\circ f):\left\{ 1,2,3 \right\}\to \left\{ apple,ball,cat \right\}$ is defined as:
As $\left( g\circ f \right)\left( 1 \right)=g\left( f\left( 1 \right) \right)=g\left( a \right)=apple$
$\begin{align}
& (g\circ f)(2)=g\left( f\left( 2 \right) \right)=g(b)=ball \\
& (g\circ f)(3)=g\left( f\left( 3 \right) \right)=g(c)=cat \\
\end{align}$
$g\circ f$ is one to one as every element of the domain $\left\{ 1,2,3 \right\}$ has different image.
$g\circ f$ is onto as every element of the codomain $\left\{ apple,ball,cat \right\}$ has a preimage in the domain.
Therefore $g\circ f$ is invertible.
We know that if a function $f$ maps one element $x$ to $y$, then the inverse function maps the image $y$ to $x$. That is:
$f\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x$
Therefore,
$\begin{align}
& f(1)=a\Rightarrow {{f}^{-1}}\left( a \right)=1 \\
& f(2)=b\Rightarrow {{f}^{-1}}\left( b \right)=2 \\
& f(3)=c\Rightarrow {{f}^{-1}}\left( c \right)=3 \\
\end{align}$
Hence,
${{f}^{-1}}:\left\{ a,b,c \right\}\to \left\{ 1,2,3 \right\}$ , such that:
${{f}^{-1}}\left( a \right)=1,{{f}^{-1}}\left( b \right)=2,{{f}^{-1}}\left( c \right)=3$
Similarly,
$\begin{align}
&g\left( a \right)=apple\Rightarrow {{g}^{-1}}\left( apple \right)=a \\
&g\left( b \right)=ball\Rightarrow {{g}^{-1}}\left( ball \right)=b \\
&g\left( c \right)=cat\Rightarrow {{g}^{-1}}\left( cat \right)=c \\
\end{align}$
Therefore,
${{g}^{-1}}:\left\{ apple,ball,cat \right\}\to \left\{ a,b,c \right\}$ , such that:
$\begin{align}
& {{g}^{-1}}(apple)=a \\
& {{g}^{-1}}\left( ball \right)=b \\
& {{g}^{-1}}\left( cat \right)=c \\
\end{align}$
Similarly,
$\begin{align}
& \left( g\circ f \right)\left( 1 \right)=apple\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( apple \right)=1 \\
& \left( g\circ f \right)\left( 2 \right)=ball\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( ball \right)=2 \\
& \left( g\circ f \right)\left( 3 \right)=cat\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( cat \right)=3 \\
\end{align}$
Therefore,
${{\left( g\circ f \right)}^{-1}}:\left\{ apple,ball,cat \right\}\to \left\{ 1,2,3 \right\}$ , such that:
$\begin{align}
& {{\left( g\circ f \right)}^{-1}}\left( apple \right)=1 \\
& {{\left( g\circ f \right)}^{-1}}\left( ball \right)=b \\
& {{\left( g\circ f \right)}^{-1}}\left( cat \right)=c \\
\end{align}$
Now,
$\begin{align}
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( apple \right)={{f}^{-1}}\left( {{g}^{-1}}\left( apple \right) \right)={{f}^{-1}}\left( a \right)=1 \\
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( ball \right)={{f}^{-1}}\left( {{g}^{-1}}\left( ball \right) \right)={{f}^{-1}}\left( b \right)=2 \\
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( cat \right)={{f}^{-1}}\left( {{g}^{-1}}\left( cat \right) \right)={{f}^{-1}}\left( c \right)=3 \\
& \\
\end{align}$
Therefore,
$\begin{align}
& {{\left( g\circ f \right)}^{-1}}\left( apple \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( apple \right) \\
& {{\left( g\circ f \right)}^{-1}}\left( ball \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( ball \right) \\
& {{\left( g\circ f \right)}^{-1}}\left( cat \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( cat \right) \\
\end{align}$
Hence, ${{\left( g\circ f \right)}^{-1}}=\left( {{f}^{-1}}\circ {{g}^{-1}} \right)$
Note: We generally make mistakes to find out the inverse function. Always remember:
$f\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE

Every party in India has to register itself with A class 11 social science CBSE

Describe the effects of the Second World War class 11 social science CBSE

What type of battery is a lead storage battery Write class 11 chemistry CBSE
