Answer
Verified
429k+ views
Hint: In this question, we are given an arithmetic progression. The difference between any two terms is known as the common difference. The difference between any two terms of the given A.P. is 4, so all the parts of this question can be easily solved by using the formula for finding the sum of first n terms of an A.P.
Complete step-by-step solution:
a) The first term of the given A.P. is 6 and its common difference is 4.
We know that the sum of n terms of an A.P. is given as –
$
{s_n} = \dfrac{n}{2}(2a + (n - 1)d) \\
\Rightarrow {s_n} = \dfrac{n}{2}[2(6) + (n - 1)4] \\
\Rightarrow {s_n} = \dfrac{n}{2}(12 + 4n - 4) \\
\Rightarrow {s_n} = \dfrac{n}{2}(8 + 4n) \\
\Rightarrow {s_n} = 2{n^2} + 4n \\
$
Hence, the sum of the first n consequence terms of the given sequence is $2{n^2} + 4n$ .
b) Let the sum of the first m terms be equal to 240, we get –
$
2{n^2} + 4n = 240 \\
\Rightarrow {n^2} + 2n = 120 \\
\Rightarrow {n^2} + 2n - 120 = 0 \\
$
The obtained equation can be solved by factorization as follows –
$
{n^2} + 12n - 10n - 120 = 0 \\
\Rightarrow n(n + 12) - 10(n + 12) = 0 \\
\Rightarrow (n - 10)(n + 12) = 0 \\
\Rightarrow n - 10 = 0,\,n + 12 = 0 \\
\Rightarrow n = 10,\,n = - 12 \\
$
As the number of terms cannot be negative so -12 is rejected.
Hence, 10 consecutive terms from the beginning should be added to get the sum 240.
c) In this part, we have to find if the sum of the first few consecutive terms is 250 or not. So,
$
2{n^2} + 4n = 250 \\
\Rightarrow 2{n^2} + 4n - 250 = 0 \\
\Rightarrow {n^2} + 2n - 125 = 0 \\
$
The obtained equation cannot be factorized so we solve it by using the quadratic formula –
$
n = \dfrac{{ - 2 \pm \sqrt {{{(2)}^2} - 4(1)( - 125)} }}{{2(1)}} \\
\Rightarrow n = \dfrac{{ - 2 \pm \sqrt {1000} }}{2} \\
\Rightarrow n = - 1 \pm 5\sqrt {10} \\
$
The number obtained is not a natural number.
Hence, the sum of the first-few consecutive terms cannot become 250.
Note: An A.P. is defined as a series or sequence of numbers in which the difference between any two consecutive terms is equal. While solving the second and the third part, we got a quadratic equation as the degree of the equation so we solve them by factorization or by applying the quadratic formula.
Complete step-by-step solution:
a) The first term of the given A.P. is 6 and its common difference is 4.
We know that the sum of n terms of an A.P. is given as –
$
{s_n} = \dfrac{n}{2}(2a + (n - 1)d) \\
\Rightarrow {s_n} = \dfrac{n}{2}[2(6) + (n - 1)4] \\
\Rightarrow {s_n} = \dfrac{n}{2}(12 + 4n - 4) \\
\Rightarrow {s_n} = \dfrac{n}{2}(8 + 4n) \\
\Rightarrow {s_n} = 2{n^2} + 4n \\
$
Hence, the sum of the first n consequence terms of the given sequence is $2{n^2} + 4n$ .
b) Let the sum of the first m terms be equal to 240, we get –
$
2{n^2} + 4n = 240 \\
\Rightarrow {n^2} + 2n = 120 \\
\Rightarrow {n^2} + 2n - 120 = 0 \\
$
The obtained equation can be solved by factorization as follows –
$
{n^2} + 12n - 10n - 120 = 0 \\
\Rightarrow n(n + 12) - 10(n + 12) = 0 \\
\Rightarrow (n - 10)(n + 12) = 0 \\
\Rightarrow n - 10 = 0,\,n + 12 = 0 \\
\Rightarrow n = 10,\,n = - 12 \\
$
As the number of terms cannot be negative so -12 is rejected.
Hence, 10 consecutive terms from the beginning should be added to get the sum 240.
c) In this part, we have to find if the sum of the first few consecutive terms is 250 or not. So,
$
2{n^2} + 4n = 250 \\
\Rightarrow 2{n^2} + 4n - 250 = 0 \\
\Rightarrow {n^2} + 2n - 125 = 0 \\
$
The obtained equation cannot be factorized so we solve it by using the quadratic formula –
$
n = \dfrac{{ - 2 \pm \sqrt {{{(2)}^2} - 4(1)( - 125)} }}{{2(1)}} \\
\Rightarrow n = \dfrac{{ - 2 \pm \sqrt {1000} }}{2} \\
\Rightarrow n = - 1 \pm 5\sqrt {10} \\
$
The number obtained is not a natural number.
Hence, the sum of the first-few consecutive terms cannot become 250.
Note: An A.P. is defined as a series or sequence of numbers in which the difference between any two consecutive terms is equal. While solving the second and the third part, we got a quadratic equation as the degree of the equation so we solve them by factorization or by applying the quadratic formula.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE