Answer
Verified
432k+ views
Hint:Use the Nernst equation and calculate the ratio of the concentration of \[{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{anode}}}}/{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{cathode}}}}\]for zero emf of the cell. Using this ratio of concentration of \[{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{anode}}}}/{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{cathode}}}}\] and solubility product values calculate the ratio of the concentration of \[{\text{B}}{{\text{r}}^{\text{ - }}}\]and \[{\text{C}}{{\text{l}}^{\text{ - }}}\].
Formulas Used:
Nernst Equation:
\[{{\text{E}}_{{\text{cell}}}}{\text{ = }}{{\text{E}}^{\text{0}}} + \dfrac{{0.0592}}{{\text{n}}}\log \dfrac{{{\text{[Anode]}}}}{{{\text{[Cathode]}}}}\]
\[{K_{sp}}{\text{(AgCl)}} = {\text{[A}}{{\text{g}}^{\text{ + }}}][{\text{C}}{{\text{l}}^{\text{ - }}}]\]
\[{K_{sp}}{\text{(AgBr)}} = {\text{[A}}{{\text{g}}^{\text{ + }}}][B{r^{\text{ - }}}]\]
Complete step-by-step answer:Cell given to us is \[{\text{Ag|AgBr(s)B}}{{\text{r}}^{\text{ - }}}{\text{||AgCl(s)C}}{{\text{l}}^{\text{ - }}}{\text{|Ag}}\]
As per the cell notation, double lines indicate the salt bridge which separates the two half cell reactions. Half cell reaction on the left side of the salt bridge is the anodic reaction. Half cell reaction on the right side of the salt bridge is a cathodic reaction. Oxidation takes place at the anode while reduction takes place at the cathode.
Use the Nernst equation and calculate the ratio of the concentration of \[{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{anode}}}}/{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{cathode}}}}\]for zero emf of the cell.
Nernst Equation:
\[{{\text{E}}_{{\text{cell}}}}{\text{ = }}{{\text{E}}^{\text{0}}} + \dfrac{{0.0592}}{{\text{n}}}\log \dfrac{{{\text{[Anode]}}}}{{{\text{[Cathode]}}}}\]
Where,
n= number of electrons transfer
For the given cell there is a transfer of 1 electron.
\[{\text{ }}{{\text{E}}^{\text{0}}}\] cell for the given reaction is zero as the same species is getting oxidized and reduced.
\[{{\text{E}}_{{\text{cell}}}}{\text{ = }}{{\text{E}}^{\text{0}}} + \dfrac{{0.0592}}{{\text{n}}}\log \dfrac{{{{{\text{[A}}{{\text{g}}^{\text{ + }}}]}_{{\text{anode}}}}}}{{{{{\text{[A}}{{\text{g}}^{\text{ + }}}]}_{{\text{cathode}}}}}}\]
Now, substitute zero for \[{{\text{E}}_{{\text{cell}}}}\] , zero for \[{\text{ }}{{\text{E}}^{\text{0}}}\] and 1 for the number of electron transfer and calculate the ratio \[{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{anode}}}}/{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{cathode}}}}\]
\[\Rightarrow {\text{0 = 0}} + \dfrac{{0.0592}}{1}\log \dfrac{{{{{\text{[A}}{{\text{g}}^{\text{ + }}}]}_{{\text{anode}}}}}}{{{{{\text{[A}}{{\text{g}}^{\text{ + }}}]}_{{\text{cathode}}}}}}\]
\[\Rightarrow \dfrac{{{{{\text{[A}}{{\text{g}}^{\text{ + }}}]}_{{\text{anode}}}}}}{{{{{\text{[A}}{{\text{g}}^{\text{ + }}}]}_{{\text{cathode}}}}}} = 1\]
Now, using the solubility product of \[{\text{AgCl}}\]and \[{\text{AgBr}}\] and \[{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{anode}}}}/{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{cathode}}}}\] ratio calculates the ratio of the concentration of \[{\text{B}}{{\text{r}}^{\text{ - }}}\]and \[{\text{C}}{{\text{l}}^{\text{ - }}}\] as follows:
\[{K_{sp}}{\text{(AgBr)}} = {{\text{[A}}{{\text{g}}^{\text{ + }}}]_{anode}}[B{r^{\text{ - }}}]\]
\[\Rightarrow {{\text{[A}}{{\text{g}}^{\text{ + }}}]_{anode}} = \dfrac{{{K_{sp}}{\text{(AgBr)}}}}{{[B{r^{\text{ - }}}]}}\]
\[\Rightarrow {{\text{[A}}{{\text{g}}^{\text{ + }}}]_{cathode}} = \dfrac{{{K_{sp}}{\text{(AgCl)}}}}{{[{\text{C}}{{\text{l}}^{\text{ - }}}]}}\]
As \[{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{anode}}}} = {{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{cathode}}}}\]
So, \[\dfrac{{{K_{sp}}{\text{(AgBr)}}}}{{[B{r^{\text{ - }}}]}} = \dfrac{{{K_{sp}}{\text{(AgCl)}}}}{{[{\text{C}}{{\text{l}}^{\text{ - }}}]}}\]
\[\dfrac{{{K_{sp}}{\text{(AgBr)}}}}{{{K_{sp}}{\text{(AgC}})}} = \dfrac{{[B{r^{\text{ - }}}]}}{{[{\text{C}}{{\text{l}}^{\text{ - }}}]}}\]
Now, substitute \[{\text{1}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}}\] for solubility product of \[{\text{AgCl}}\] and \[{\text{5}} \times {\text{1}}{{\text{0}}^{{\text{ - 13}}}}\] for solubility product of\[{\text{AgBr}}\] and calculate the ratio of the concentration of \[{\text{B}}{{\text{r}}^{\text{ - }}}\]and.
\[\dfrac{{[B{r^{\text{ - }}}]}}{{[{\text{C}}{{\text{l}}^{\text{ - }}}]}} = \dfrac{{{\text{5}} \times {\text{1}}{{\text{0}}^{{\text{ - 13}}}}}}{{{\text{1}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}}}}\]
\[\Rightarrow \dfrac{{[B{r^{\text{ - }}}]}}{{[{\text{C}}{{\text{l}}^{\text{ - }}}]}} = 0.005\]
\[\Rightarrow \dfrac{{[B{r^{\text{ - }}}]}}{{[{\text{C}}{{\text{l}}^{\text{ - }}}]}} = \dfrac{1}{{200}}\]
Thus, at a ratio of 1/200 for the concentration of \[{\text{B}}{{\text{r}}^{\text{ - }}}\]and \[{\text{C}}{{\text{l}}^{\text{ - }}}\]the emf of the cell would be zero.
Note:Solubility values of \[{\text{AgCl}}\]and \[{\text{AgBr}}\] are very low which indicate that these salt are sparingly soluble. The standard electrode potential of the cell is the potential difference between the standard electrode potential of the right-hand cell (cathode) minus the standard reduction potential of the left-hand cell (anode).
Formulas Used:
Nernst Equation:
\[{{\text{E}}_{{\text{cell}}}}{\text{ = }}{{\text{E}}^{\text{0}}} + \dfrac{{0.0592}}{{\text{n}}}\log \dfrac{{{\text{[Anode]}}}}{{{\text{[Cathode]}}}}\]
\[{K_{sp}}{\text{(AgCl)}} = {\text{[A}}{{\text{g}}^{\text{ + }}}][{\text{C}}{{\text{l}}^{\text{ - }}}]\]
\[{K_{sp}}{\text{(AgBr)}} = {\text{[A}}{{\text{g}}^{\text{ + }}}][B{r^{\text{ - }}}]\]
Complete step-by-step answer:Cell given to us is \[{\text{Ag|AgBr(s)B}}{{\text{r}}^{\text{ - }}}{\text{||AgCl(s)C}}{{\text{l}}^{\text{ - }}}{\text{|Ag}}\]
As per the cell notation, double lines indicate the salt bridge which separates the two half cell reactions. Half cell reaction on the left side of the salt bridge is the anodic reaction. Half cell reaction on the right side of the salt bridge is a cathodic reaction. Oxidation takes place at the anode while reduction takes place at the cathode.
Use the Nernst equation and calculate the ratio of the concentration of \[{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{anode}}}}/{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{cathode}}}}\]for zero emf of the cell.
Nernst Equation:
\[{{\text{E}}_{{\text{cell}}}}{\text{ = }}{{\text{E}}^{\text{0}}} + \dfrac{{0.0592}}{{\text{n}}}\log \dfrac{{{\text{[Anode]}}}}{{{\text{[Cathode]}}}}\]
Where,
n= number of electrons transfer
For the given cell there is a transfer of 1 electron.
\[{\text{ }}{{\text{E}}^{\text{0}}}\] cell for the given reaction is zero as the same species is getting oxidized and reduced.
\[{{\text{E}}_{{\text{cell}}}}{\text{ = }}{{\text{E}}^{\text{0}}} + \dfrac{{0.0592}}{{\text{n}}}\log \dfrac{{{{{\text{[A}}{{\text{g}}^{\text{ + }}}]}_{{\text{anode}}}}}}{{{{{\text{[A}}{{\text{g}}^{\text{ + }}}]}_{{\text{cathode}}}}}}\]
Now, substitute zero for \[{{\text{E}}_{{\text{cell}}}}\] , zero for \[{\text{ }}{{\text{E}}^{\text{0}}}\] and 1 for the number of electron transfer and calculate the ratio \[{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{anode}}}}/{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{cathode}}}}\]
\[\Rightarrow {\text{0 = 0}} + \dfrac{{0.0592}}{1}\log \dfrac{{{{{\text{[A}}{{\text{g}}^{\text{ + }}}]}_{{\text{anode}}}}}}{{{{{\text{[A}}{{\text{g}}^{\text{ + }}}]}_{{\text{cathode}}}}}}\]
\[\Rightarrow \dfrac{{{{{\text{[A}}{{\text{g}}^{\text{ + }}}]}_{{\text{anode}}}}}}{{{{{\text{[A}}{{\text{g}}^{\text{ + }}}]}_{{\text{cathode}}}}}} = 1\]
Now, using the solubility product of \[{\text{AgCl}}\]and \[{\text{AgBr}}\] and \[{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{anode}}}}/{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{cathode}}}}\] ratio calculates the ratio of the concentration of \[{\text{B}}{{\text{r}}^{\text{ - }}}\]and \[{\text{C}}{{\text{l}}^{\text{ - }}}\] as follows:
\[{K_{sp}}{\text{(AgBr)}} = {{\text{[A}}{{\text{g}}^{\text{ + }}}]_{anode}}[B{r^{\text{ - }}}]\]
\[\Rightarrow {{\text{[A}}{{\text{g}}^{\text{ + }}}]_{anode}} = \dfrac{{{K_{sp}}{\text{(AgBr)}}}}{{[B{r^{\text{ - }}}]}}\]
\[\Rightarrow {{\text{[A}}{{\text{g}}^{\text{ + }}}]_{cathode}} = \dfrac{{{K_{sp}}{\text{(AgCl)}}}}{{[{\text{C}}{{\text{l}}^{\text{ - }}}]}}\]
As \[{{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{anode}}}} = {{\text{[A}}{{\text{g}}^{\text{ + }}}]_{{\text{cathode}}}}\]
So, \[\dfrac{{{K_{sp}}{\text{(AgBr)}}}}{{[B{r^{\text{ - }}}]}} = \dfrac{{{K_{sp}}{\text{(AgCl)}}}}{{[{\text{C}}{{\text{l}}^{\text{ - }}}]}}\]
\[\dfrac{{{K_{sp}}{\text{(AgBr)}}}}{{{K_{sp}}{\text{(AgC}})}} = \dfrac{{[B{r^{\text{ - }}}]}}{{[{\text{C}}{{\text{l}}^{\text{ - }}}]}}\]
Now, substitute \[{\text{1}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}}\] for solubility product of \[{\text{AgCl}}\] and \[{\text{5}} \times {\text{1}}{{\text{0}}^{{\text{ - 13}}}}\] for solubility product of\[{\text{AgBr}}\] and calculate the ratio of the concentration of \[{\text{B}}{{\text{r}}^{\text{ - }}}\]and.
\[\dfrac{{[B{r^{\text{ - }}}]}}{{[{\text{C}}{{\text{l}}^{\text{ - }}}]}} = \dfrac{{{\text{5}} \times {\text{1}}{{\text{0}}^{{\text{ - 13}}}}}}{{{\text{1}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}}}}\]
\[\Rightarrow \dfrac{{[B{r^{\text{ - }}}]}}{{[{\text{C}}{{\text{l}}^{\text{ - }}}]}} = 0.005\]
\[\Rightarrow \dfrac{{[B{r^{\text{ - }}}]}}{{[{\text{C}}{{\text{l}}^{\text{ - }}}]}} = \dfrac{1}{{200}}\]
Thus, at a ratio of 1/200 for the concentration of \[{\text{B}}{{\text{r}}^{\text{ - }}}\]and \[{\text{C}}{{\text{l}}^{\text{ - }}}\]the emf of the cell would be zero.
Note:Solubility values of \[{\text{AgCl}}\]and \[{\text{AgBr}}\] are very low which indicate that these salt are sparingly soluble. The standard electrode potential of the cell is the potential difference between the standard electrode potential of the right-hand cell (cathode) minus the standard reduction potential of the left-hand cell (anode).
Recently Updated Pages
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Points A and B are situated along the extended axis class 12 physics JEE_Main
Two identical pn junctions may be connected in series class 12 physics JEE_Main
A piece of copper and another of germanium are cooled class 12 physics JEE_Main
A piece of semiconductor is connected in series in class 12 phy sec 1 JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE