
Consider the following function $f(x+2y,x-2y)=xy$, then $f(x,y)$ equals
$\begin{align}
& \left( A \right)\dfrac{{{x}^{2}}-{{y}^{2}}}{8} \\
& \left( B \right)\dfrac{{{x}^{2}}-{{y}^{2}}}{4} \\
& \left( C \right)\dfrac{{{x}^{2}}+{{y}^{2}}}{4} \\
& \left( D \right)\dfrac{{{x}^{2}}-{{y}^{2}}}{2} \\
\end{align}$
Answer
579k+ views
Hint: For solving this question, we consider the given variables x+2y and x-2y as some other variables X and Y. Then we get two equations in terms of x, y and X, Y. Using those equations, we can find the values of x and y in terms of X and Y. Then we will get the function with variables X and Y only in terms of X and Y, by substituting them in place of x and y. Then we change X as x and Y as y to modify them to get an answer as in the options.
Complete step by step answer:
We were given a function f such that $f(x+2y,x-2y)=xy$.
Now let us consider two new variables X, Y such that
X=x+2y
Y=x-2y
Now, let us find the value of x in terms of X and Y.
Let us consider the value of X+Y.
$\begin{align}
& \Rightarrow X+Y=\left( x+2y \right)+\left( x-2y \right) \\
& \Rightarrow X+Y=2x \\
\end{align}$
So, we can write x in terms of X and Y as
$\begin{align}
& \Rightarrow X+Y=2x \\
& \Rightarrow x=\dfrac{X+Y}{2} \\
\end{align}$
Now, let us find the value of y in terms of X and Y.
Let us consider the value of X-Y.
$\begin{align}
& \Rightarrow X-Y=\left( x+2y \right)-\left( x-2y \right) \\
& \Rightarrow X-Y=4y \\
\end{align}$
So, we can write y in terms of X and Y as
$\begin{align}
& \Rightarrow X-Y=4y \\
& \Rightarrow y=\dfrac{X-Y}{4} \\
\end{align}$
So, the values of x and y in terms of X and Y are as below
$x=\dfrac{X+Y}{2}$
$y=\dfrac{X-Y}{4}$
So, we substitute these values in the given function value $f(x+2y,x-2y)=xy$.
Then, we get the function in the terms of X and Y.
$\begin{align}
& \Rightarrow f(x+2y,x-2y)=xy \\
& \Rightarrow f(X,Y)=\left( \dfrac{X+Y}{2} \right)\left( \dfrac{X-Y}{4} \right) \\
& \Rightarrow f(X,Y)=\dfrac{\left( X+Y \right)\left( X-Y \right)}{8} \\
\end{align}$
Now, let us consider the formula,
$\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
So, the value of product of (X+Y) and (X-Y) is
$\left( X+Y \right)\left( X-Y \right)={{X}^{2}}-{{Y}^{2}}$
Then, we can write the function as,
\[\Rightarrow f(X,Y)=\dfrac{{{X}^{2}}-{{Y}^{2}}}{8}\]
So, for the function f on X and Y value of the function is \[f(X,Y)=\dfrac{{{X}^{2}}-{{Y}^{2}}}{8}\].
Now, let us replace X by x and Y by y, then we can write the function as,
\[\Rightarrow f(x,y)=\dfrac{{{x}^{2}}-{{y}^{2}}}{8}\]
So, the correct answer is “Option A”.
Note: The chance of occurrence of mistake is at the ending of the solution, one might think that we should not change the variables X and Y into x and y. Here, we are not transforming the variables like we did in the starting of the solution, we are just changing the symbol from X to x and Y to y to make it look like the one in the given options.
Complete step by step answer:
We were given a function f such that $f(x+2y,x-2y)=xy$.
Now let us consider two new variables X, Y such that
X=x+2y
Y=x-2y
Now, let us find the value of x in terms of X and Y.
Let us consider the value of X+Y.
$\begin{align}
& \Rightarrow X+Y=\left( x+2y \right)+\left( x-2y \right) \\
& \Rightarrow X+Y=2x \\
\end{align}$
So, we can write x in terms of X and Y as
$\begin{align}
& \Rightarrow X+Y=2x \\
& \Rightarrow x=\dfrac{X+Y}{2} \\
\end{align}$
Now, let us find the value of y in terms of X and Y.
Let us consider the value of X-Y.
$\begin{align}
& \Rightarrow X-Y=\left( x+2y \right)-\left( x-2y \right) \\
& \Rightarrow X-Y=4y \\
\end{align}$
So, we can write y in terms of X and Y as
$\begin{align}
& \Rightarrow X-Y=4y \\
& \Rightarrow y=\dfrac{X-Y}{4} \\
\end{align}$
So, the values of x and y in terms of X and Y are as below
$x=\dfrac{X+Y}{2}$
$y=\dfrac{X-Y}{4}$
So, we substitute these values in the given function value $f(x+2y,x-2y)=xy$.
Then, we get the function in the terms of X and Y.
$\begin{align}
& \Rightarrow f(x+2y,x-2y)=xy \\
& \Rightarrow f(X,Y)=\left( \dfrac{X+Y}{2} \right)\left( \dfrac{X-Y}{4} \right) \\
& \Rightarrow f(X,Y)=\dfrac{\left( X+Y \right)\left( X-Y \right)}{8} \\
\end{align}$
Now, let us consider the formula,
$\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
So, the value of product of (X+Y) and (X-Y) is
$\left( X+Y \right)\left( X-Y \right)={{X}^{2}}-{{Y}^{2}}$
Then, we can write the function as,
\[\Rightarrow f(X,Y)=\dfrac{{{X}^{2}}-{{Y}^{2}}}{8}\]
So, for the function f on X and Y value of the function is \[f(X,Y)=\dfrac{{{X}^{2}}-{{Y}^{2}}}{8}\].
Now, let us replace X by x and Y by y, then we can write the function as,
\[\Rightarrow f(x,y)=\dfrac{{{x}^{2}}-{{y}^{2}}}{8}\]
So, the correct answer is “Option A”.
Note: The chance of occurrence of mistake is at the ending of the solution, one might think that we should not change the variables X and Y into x and y. Here, we are not transforming the variables like we did in the starting of the solution, we are just changing the symbol from X to x and Y to y to make it look like the one in the given options.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

