Answer
Verified
472.2k+ views
Hint: For solving this question, we consider the given variables x+2y and x-2y as some other variables X and Y. Then we get two equations in terms of x, y and X, Y. Using those equations, we can find the values of x and y in terms of X and Y. Then we will get the function with variables X and Y only in terms of X and Y, by substituting them in place of x and y. Then we change X as x and Y as y to modify them to get an answer as in the options.
Complete step by step answer:
We were given a function f such that $f(x+2y,x-2y)=xy$.
Now let us consider two new variables X, Y such that
X=x+2y
Y=x-2y
Now, let us find the value of x in terms of X and Y.
Let us consider the value of X+Y.
$\begin{align}
& \Rightarrow X+Y=\left( x+2y \right)+\left( x-2y \right) \\
& \Rightarrow X+Y=2x \\
\end{align}$
So, we can write x in terms of X and Y as
$\begin{align}
& \Rightarrow X+Y=2x \\
& \Rightarrow x=\dfrac{X+Y}{2} \\
\end{align}$
Now, let us find the value of y in terms of X and Y.
Let us consider the value of X-Y.
$\begin{align}
& \Rightarrow X-Y=\left( x+2y \right)-\left( x-2y \right) \\
& \Rightarrow X-Y=4y \\
\end{align}$
So, we can write y in terms of X and Y as
$\begin{align}
& \Rightarrow X-Y=4y \\
& \Rightarrow y=\dfrac{X-Y}{4} \\
\end{align}$
So, the values of x and y in terms of X and Y are as below
$x=\dfrac{X+Y}{2}$
$y=\dfrac{X-Y}{4}$
So, we substitute these values in the given function value $f(x+2y,x-2y)=xy$.
Then, we get the function in the terms of X and Y.
$\begin{align}
& \Rightarrow f(x+2y,x-2y)=xy \\
& \Rightarrow f(X,Y)=\left( \dfrac{X+Y}{2} \right)\left( \dfrac{X-Y}{4} \right) \\
& \Rightarrow f(X,Y)=\dfrac{\left( X+Y \right)\left( X-Y \right)}{8} \\
\end{align}$
Now, let us consider the formula,
$\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
So, the value of product of (X+Y) and (X-Y) is
$\left( X+Y \right)\left( X-Y \right)={{X}^{2}}-{{Y}^{2}}$
Then, we can write the function as,
\[\Rightarrow f(X,Y)=\dfrac{{{X}^{2}}-{{Y}^{2}}}{8}\]
So, for the function f on X and Y value of the function is \[f(X,Y)=\dfrac{{{X}^{2}}-{{Y}^{2}}}{8}\].
Now, let us replace X by x and Y by y, then we can write the function as,
\[\Rightarrow f(x,y)=\dfrac{{{x}^{2}}-{{y}^{2}}}{8}\]
So, the correct answer is “Option A”.
Note: The chance of occurrence of mistake is at the ending of the solution, one might think that we should not change the variables X and Y into x and y. Here, we are not transforming the variables like we did in the starting of the solution, we are just changing the symbol from X to x and Y to y to make it look like the one in the given options.
Complete step by step answer:
We were given a function f such that $f(x+2y,x-2y)=xy$.
Now let us consider two new variables X, Y such that
X=x+2y
Y=x-2y
Now, let us find the value of x in terms of X and Y.
Let us consider the value of X+Y.
$\begin{align}
& \Rightarrow X+Y=\left( x+2y \right)+\left( x-2y \right) \\
& \Rightarrow X+Y=2x \\
\end{align}$
So, we can write x in terms of X and Y as
$\begin{align}
& \Rightarrow X+Y=2x \\
& \Rightarrow x=\dfrac{X+Y}{2} \\
\end{align}$
Now, let us find the value of y in terms of X and Y.
Let us consider the value of X-Y.
$\begin{align}
& \Rightarrow X-Y=\left( x+2y \right)-\left( x-2y \right) \\
& \Rightarrow X-Y=4y \\
\end{align}$
So, we can write y in terms of X and Y as
$\begin{align}
& \Rightarrow X-Y=4y \\
& \Rightarrow y=\dfrac{X-Y}{4} \\
\end{align}$
So, the values of x and y in terms of X and Y are as below
$x=\dfrac{X+Y}{2}$
$y=\dfrac{X-Y}{4}$
So, we substitute these values in the given function value $f(x+2y,x-2y)=xy$.
Then, we get the function in the terms of X and Y.
$\begin{align}
& \Rightarrow f(x+2y,x-2y)=xy \\
& \Rightarrow f(X,Y)=\left( \dfrac{X+Y}{2} \right)\left( \dfrac{X-Y}{4} \right) \\
& \Rightarrow f(X,Y)=\dfrac{\left( X+Y \right)\left( X-Y \right)}{8} \\
\end{align}$
Now, let us consider the formula,
$\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
So, the value of product of (X+Y) and (X-Y) is
$\left( X+Y \right)\left( X-Y \right)={{X}^{2}}-{{Y}^{2}}$
Then, we can write the function as,
\[\Rightarrow f(X,Y)=\dfrac{{{X}^{2}}-{{Y}^{2}}}{8}\]
So, for the function f on X and Y value of the function is \[f(X,Y)=\dfrac{{{X}^{2}}-{{Y}^{2}}}{8}\].
Now, let us replace X by x and Y by y, then we can write the function as,
\[\Rightarrow f(x,y)=\dfrac{{{x}^{2}}-{{y}^{2}}}{8}\]
So, the correct answer is “Option A”.
Note: The chance of occurrence of mistake is at the ending of the solution, one might think that we should not change the variables X and Y into x and y. Here, we are not transforming the variables like we did in the starting of the solution, we are just changing the symbol from X to x and Y to y to make it look like the one in the given options.
Recently Updated Pages
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
ABC is a right angled triangular plate of uniform thickness class 11 phy sec 1 JEE_Main
The linear velocity perpendicular to the radius vector class 11 physics JEE_Main
The normality of 03 M phosphorus acid H3PO3 is class 11 chemistry NEET_UG
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE