Answer
Verified
468.9k+ views
Hint: We have \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\] which is the product of two functions \[{{\left( 1-x \right)}^{\alpha }}\] and \[{{e}^{\alpha x}}.\] In order to find \[{{y}_{1}}\] we have to first find the first derivative of y with respect to x. We use the product formula, i.e. \[\dfrac{d\left( uv \right)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\] to find the first derivative. When we find our first derivative, we multiply it with (1 – x) to get our required solution.
Complete step-by-step answer:
We are given y as \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}.\] We have to calculate the value of \[\left( 1-x \right){{y}_{1}}.\] To so, we have to evaluate the first derivative of y with respect to x as we know that \[{{y}_{1}}=\dfrac{dy}{dx}.\]
Now, as we can see that \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\] is a product of two functions, so to find the derivative, we use the product rule,
\[\dfrac{d\left( uv \right)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\]
So we use this on \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}.\]
So, we have,
\[\dfrac{dy}{dx}=\dfrac{d\left( {{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}} \right)}{dx}\]
Using the product rule, we get,
\[\Rightarrow \dfrac{dy}{dx}={{e}^{\alpha x}}\dfrac{d}{dx}{{\left( 1-x \right)}^{\alpha }}+{{\left( 1-x \right)}^{\alpha }}\dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}......\left( i \right)\]
Now as \[\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}\] and \[\dfrac{d\left( {{e}^{x}} \right)}{dx}=1,\] we get,
\[\dfrac{d{{\left( 1-x \right)}^{\alpha }}}{dx}=a\left( 1-x \right)\left( -1 \right)\]
And,
\[\dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}=\dfrac{{{e}^{\alpha x}}d\left( \alpha x \right)}{\alpha x}\]
\[\Rightarrow \dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}={{e}^{\alpha x}}.\alpha \]
\[\Rightarrow \dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}=\alpha .{{e}^{\alpha x}}\]
Now we put these two values in (i), we will have,
\[\dfrac{dy}{dx}={{e}^{\alpha x}}\left[ \alpha {{\left( 1-x \right)}^{\alpha -1}}\left( -1 \right) \right]+{{\left( 1-x \right)}^{^{a}}}\left( \alpha {{e}^{\alpha x}} \right)\]
Now, simplifying we get,
\[\dfrac{dy}{dx}=-\alpha {{\left( 1-x \right)}^{a-1}}{{e}^{\alpha x}}+\alpha {{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\]
Taking \[\alpha {{e}^{\alpha x}}\] we get,
\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}\left[ -{{\left( 1-x \right)}^{a-1}}+{{\left( 1-x \right)}^{\alpha }} \right]\]
Taking \[{{\left( 1-x \right)}^{\alpha -1}}\] common, we will get,
\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left[ -1+1-x \right]\]
On simplifying, we will get,
\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right)\]
So, we get,
\[\Rightarrow {{y}_{1}}=\dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right).......\left( ii \right)\]
Now, we want to find the value \[\left( 1-x \right){{y}_{1}}.\] So, we will multiply the value of \[{{y}_{1}}\] in (ii) by (1 – x). So, we get,
\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right)\left( 1-x \right)\]
As, \[{{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha }}=y,\] we get,
\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha }}\left( -x \right)\]
\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha y\left( -x \right)\]
\[\Rightarrow \left( 1-x \right){{y}_{1}}=-x\alpha y\]
So we get the required answer as \[-x\alpha y.\]
So, the correct answer is “Option D”.
Note: While finding the derivative, always double-check your solution, as \[\dfrac{d\left[ {{\left( 1-x \right)}^{\alpha }} \right]}{dx}\ne \alpha {{\left( 1-x \right)}^{\alpha -1}}.\] When we differentiate \[{{\left( 1-x \right)}^{\alpha }}\] with x, first we take (1 – x) as t. So, \[\dfrac{d{{\left( 1-x \right)}^{\alpha }}}{dx}=\dfrac{d\left( {{t}^{\alpha }} \right)}{dx}=\alpha {{t}^{\alpha -1}}\dfrac{dt}{dx}.\] Now, we will differentiate t = 1 – x with respect to x.
\[\Rightarrow \dfrac{d\left( t \right)}{dx}=\dfrac{d\left( 1-x \right)}{dx}\]
\[\Rightarrow \dfrac{d\left( t \right)}{dx}=\dfrac{d\left( 1 \right)}{dx}-\dfrac{d\left( x \right)}{dx}\]
\[\Rightarrow \dfrac{d\left( t \right)}{dx}=-1\]
So, we get,
\[\dfrac{d\left[ {{\left( 1-x \right)}^{\alpha }} \right]}{dx}=\alpha {{\left( 1-x \right)}^{\alpha -1}}\left( -1 \right)\]
Complete step-by-step answer:
We are given y as \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}.\] We have to calculate the value of \[\left( 1-x \right){{y}_{1}}.\] To so, we have to evaluate the first derivative of y with respect to x as we know that \[{{y}_{1}}=\dfrac{dy}{dx}.\]
Now, as we can see that \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\] is a product of two functions, so to find the derivative, we use the product rule,
\[\dfrac{d\left( uv \right)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\]
So we use this on \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}.\]
So, we have,
\[\dfrac{dy}{dx}=\dfrac{d\left( {{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}} \right)}{dx}\]
Using the product rule, we get,
\[\Rightarrow \dfrac{dy}{dx}={{e}^{\alpha x}}\dfrac{d}{dx}{{\left( 1-x \right)}^{\alpha }}+{{\left( 1-x \right)}^{\alpha }}\dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}......\left( i \right)\]
Now as \[\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}\] and \[\dfrac{d\left( {{e}^{x}} \right)}{dx}=1,\] we get,
\[\dfrac{d{{\left( 1-x \right)}^{\alpha }}}{dx}=a\left( 1-x \right)\left( -1 \right)\]
And,
\[\dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}=\dfrac{{{e}^{\alpha x}}d\left( \alpha x \right)}{\alpha x}\]
\[\Rightarrow \dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}={{e}^{\alpha x}}.\alpha \]
\[\Rightarrow \dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}=\alpha .{{e}^{\alpha x}}\]
Now we put these two values in (i), we will have,
\[\dfrac{dy}{dx}={{e}^{\alpha x}}\left[ \alpha {{\left( 1-x \right)}^{\alpha -1}}\left( -1 \right) \right]+{{\left( 1-x \right)}^{^{a}}}\left( \alpha {{e}^{\alpha x}} \right)\]
Now, simplifying we get,
\[\dfrac{dy}{dx}=-\alpha {{\left( 1-x \right)}^{a-1}}{{e}^{\alpha x}}+\alpha {{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\]
Taking \[\alpha {{e}^{\alpha x}}\] we get,
\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}\left[ -{{\left( 1-x \right)}^{a-1}}+{{\left( 1-x \right)}^{\alpha }} \right]\]
Taking \[{{\left( 1-x \right)}^{\alpha -1}}\] common, we will get,
\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left[ -1+1-x \right]\]
On simplifying, we will get,
\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right)\]
So, we get,
\[\Rightarrow {{y}_{1}}=\dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right).......\left( ii \right)\]
Now, we want to find the value \[\left( 1-x \right){{y}_{1}}.\] So, we will multiply the value of \[{{y}_{1}}\] in (ii) by (1 – x). So, we get,
\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right)\left( 1-x \right)\]
As, \[{{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha }}=y,\] we get,
\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha }}\left( -x \right)\]
\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha y\left( -x \right)\]
\[\Rightarrow \left( 1-x \right){{y}_{1}}=-x\alpha y\]
So we get the required answer as \[-x\alpha y.\]
So, the correct answer is “Option D”.
Note: While finding the derivative, always double-check your solution, as \[\dfrac{d\left[ {{\left( 1-x \right)}^{\alpha }} \right]}{dx}\ne \alpha {{\left( 1-x \right)}^{\alpha -1}}.\] When we differentiate \[{{\left( 1-x \right)}^{\alpha }}\] with x, first we take (1 – x) as t. So, \[\dfrac{d{{\left( 1-x \right)}^{\alpha }}}{dx}=\dfrac{d\left( {{t}^{\alpha }} \right)}{dx}=\alpha {{t}^{\alpha -1}}\dfrac{dt}{dx}.\] Now, we will differentiate t = 1 – x with respect to x.
\[\Rightarrow \dfrac{d\left( t \right)}{dx}=\dfrac{d\left( 1-x \right)}{dx}\]
\[\Rightarrow \dfrac{d\left( t \right)}{dx}=\dfrac{d\left( 1 \right)}{dx}-\dfrac{d\left( x \right)}{dx}\]
\[\Rightarrow \dfrac{d\left( t \right)}{dx}=-1\]
So, we get,
\[\dfrac{d\left[ {{\left( 1-x \right)}^{\alpha }} \right]}{dx}=\alpha {{\left( 1-x \right)}^{\alpha -1}}\left( -1 \right)\]
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE