
How do you construct a 95% confidence interval?
Answer
539.1k+ views
Hint: We first express the concept of Confidence levels. We take an arbitrary example to understand the concept better.
Complete step by step solution:
Confidence levels are expressed as a percentage (for example, a 95% confidence level). It means that should you repeat an experiment or survey over and over again, 95 percent of the time your results will match the results you get from a population (in other words, your statistics would be sound). Confidence intervals are your results and they are usually numbers.
We constructed a 95% confidence interval for an experiment that found the sample mean temperature for a certain city in August was $\overline{x}=100$, with a population standard deviation of $\sigma =17.50$. There were 40 samples in this experiment.
The $\alpha $-level is $\dfrac{1-.95}{2}=.025$.
The formula is $\overline{x}\pm \left( z\times \dfrac{\sigma }{\sqrt{n}} \right)$. Here n is the number of samples. z is from the standard distribution tables (in the reference), and is $1.96$for a CI of 95%.
So, $\overline{x}\pm \left( z\times \dfrac{\sigma }{\sqrt{n}} \right)=100\pm \left( 1.96\times \dfrac{17.5}{\sqrt{40}} \right)=100\pm 5.42=\left[ 94.58,105.42 \right]$.
Note:
For example, if we survey a group of pet owners to see how many cans of dog food, they purchase a year. We test our statistics at the 99 percent confidence level and get a confidence interval of (200, 300). That means you think they buy between 200 and 300 cans a year. We are super confident (99% is a very high level) that our results are sound, statistically.
Complete step by step solution:
Confidence levels are expressed as a percentage (for example, a 95% confidence level). It means that should you repeat an experiment or survey over and over again, 95 percent of the time your results will match the results you get from a population (in other words, your statistics would be sound). Confidence intervals are your results and they are usually numbers.
We constructed a 95% confidence interval for an experiment that found the sample mean temperature for a certain city in August was $\overline{x}=100$, with a population standard deviation of $\sigma =17.50$. There were 40 samples in this experiment.
The $\alpha $-level is $\dfrac{1-.95}{2}=.025$.
The formula is $\overline{x}\pm \left( z\times \dfrac{\sigma }{\sqrt{n}} \right)$. Here n is the number of samples. z is from the standard distribution tables (in the reference), and is $1.96$for a CI of 95%.
So, $\overline{x}\pm \left( z\times \dfrac{\sigma }{\sqrt{n}} \right)=100\pm \left( 1.96\times \dfrac{17.5}{\sqrt{40}} \right)=100\pm 5.42=\left[ 94.58,105.42 \right]$.
Note:
For example, if we survey a group of pet owners to see how many cans of dog food, they purchase a year. We test our statistics at the 99 percent confidence level and get a confidence interval of (200, 300). That means you think they buy between 200 and 300 cans a year. We are super confident (99% is a very high level) that our results are sound, statistically.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

