Answer
Verified
430.5k+ views
Hint: In this problem, we have to find the fraction for the given decimal. We can first assume x to the given decimal. We can then multiply the both to 10 and 100, we will get two equations. We can then subtract the both equations to get the value of x, that is the exact fraction of the given decimal number.
Complete step by step answer:
We know that the given decimal number to be converted into its fraction is 0.87, where 7 is repeated, so we can write as 0.87777….
We can assume the decimal number to x, we get
\[\Rightarrow x=0.8777...\] ….. (1)
Now we can multiply the number 10 on both sides were in right-hand side the decimal point moves one point to the right, we get
\[\Rightarrow 10x=8.777...\] ….. (2)
Now we can multiply 100 on both side of equation (1), we get
\[\Rightarrow 100x=87.777...\] …. (3)
We can now subtract the equation (2) and (3), we get
\[\Rightarrow 90x=79.00\]
We can now divide the number 90 on both the sides, we get
\[\Rightarrow x=\dfrac{79}{90}\]
Therefore, the fractional form of the decimal 0.87 (7 being repeated) is \[\dfrac{79}{90}\].
Note: Students make mistakes while reading the question properly, here ‘7 is being repeated’ is an important point to be noted. We should also know that if we multiply a decimal number by 10 and 100, we should move the decimal point 1 and 2 points to the right respectively.
Complete step by step answer:
We know that the given decimal number to be converted into its fraction is 0.87, where 7 is repeated, so we can write as 0.87777….
We can assume the decimal number to x, we get
\[\Rightarrow x=0.8777...\] ….. (1)
Now we can multiply the number 10 on both sides were in right-hand side the decimal point moves one point to the right, we get
\[\Rightarrow 10x=8.777...\] ….. (2)
Now we can multiply 100 on both side of equation (1), we get
\[\Rightarrow 100x=87.777...\] …. (3)
We can now subtract the equation (2) and (3), we get
\[\Rightarrow 90x=79.00\]
We can now divide the number 90 on both the sides, we get
\[\Rightarrow x=\dfrac{79}{90}\]
Therefore, the fractional form of the decimal 0.87 (7 being repeated) is \[\dfrac{79}{90}\].
Note: Students make mistakes while reading the question properly, here ‘7 is being repeated’ is an important point to be noted. We should also know that if we multiply a decimal number by 10 and 100, we should move the decimal point 1 and 2 points to the right respectively.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE