How do you convert 285 degrees to radians?
Answer
Verified
442.8k+ views
Hint: The measurement of angles can be done in two different units namely radian and degree. In geometry, we measure the angles in degree but also in radians sometimes, similarly in trigonometry, we measure the angle in radians but sometimes in degrees too. So, there are different kinds of units for determining the angle that are, degrees and radians. There is a simple formula to convert a given degree into radians (vice versa). Using that formula, we can find out the correct answer.
Complete step-by-step solution:
The value of \[{180^0}\] is equal to \[\pi \]radians.
Then \[{1^0}\] is equal to \[\dfrac{\pi }{{180}}\] radians.
So the given \[{x^0}\] is equal to \[x \times \dfrac{\pi }{{180}}\] radians.
This is the general formula for converting the angel in degrees to radians.
Now We have, \[{285^0}\].
Using the formula
\[ \Rightarrow {285^0} = 285 \times \dfrac{\pi }{{180}}{\text{ radians}}\]
\[ \Rightarrow \dfrac{{285\pi }}{{180}}\].
To cancel this we find the factors of 285 and 180.
That is, \[285 = 3 \times 5 \times 19\]
\[ \Rightarrow 180 = 2 \times 2 \times 3 \times 3 \times 5\]
Then we have,
\[ \Rightarrow \dfrac{{3 \times 5 \times 19}}{{2 \times 2 \times 3 \times 3 \times 5}}\pi \]
Cancelling we have
\[ \Rightarrow \dfrac{{19\pi }}{{12}}\].
Hence \[{285^0}\] is \[\dfrac{{19\pi }}{{12}}\] rad.
We can put it in the decimal form, that is we know that the value of \[\pi \] is 3.142.
Substituting and simplifying we have,
\[ \Rightarrow \dfrac{{19 \times 3.142}}{{12}}\]
\[ \Rightarrow 4.975\].
Hence \[{285^0}\] is 4.975 rad.
Note: We know that the radian is denoted by ‘rad’. Suppose if they ask us to convert \[\dfrac{{19\pi }}{{12}}\]rad into degree. The value of \[\pi \] radian is equal to \[{180^0}\].
Then 1 rad is equal to \[\dfrac{{180}}{\pi }\] degrees.
So the given \[x\] rad is equal to \[x \times \dfrac{{180}}{\pi }\] degrees.
This is the general formula for converting the angle in radians to degrees.
Then \[\dfrac{{19\pi }}{{12}}\] rad becomes
\[\Rightarrow \dfrac{{19\pi }}{{12}} = \dfrac{{19\pi }}{{12}} \times \dfrac{{180}}{\pi }\] degree
\[ \Rightarrow \dfrac{{19 \times 180}}{{12}}\]
\[ \Rightarrow 19 \times 15\]
\[ \Rightarrow {285^0}\].
Hence \[\dfrac{{19\pi }}{{12}}\]rad is equal to \[{285^0}\] .
Complete step-by-step solution:
The value of \[{180^0}\] is equal to \[\pi \]radians.
Then \[{1^0}\] is equal to \[\dfrac{\pi }{{180}}\] radians.
So the given \[{x^0}\] is equal to \[x \times \dfrac{\pi }{{180}}\] radians.
This is the general formula for converting the angel in degrees to radians.
Now We have, \[{285^0}\].
Using the formula
\[ \Rightarrow {285^0} = 285 \times \dfrac{\pi }{{180}}{\text{ radians}}\]
\[ \Rightarrow \dfrac{{285\pi }}{{180}}\].
To cancel this we find the factors of 285 and 180.
That is, \[285 = 3 \times 5 \times 19\]
\[ \Rightarrow 180 = 2 \times 2 \times 3 \times 3 \times 5\]
Then we have,
\[ \Rightarrow \dfrac{{3 \times 5 \times 19}}{{2 \times 2 \times 3 \times 3 \times 5}}\pi \]
Cancelling we have
\[ \Rightarrow \dfrac{{19\pi }}{{12}}\].
Hence \[{285^0}\] is \[\dfrac{{19\pi }}{{12}}\] rad.
We can put it in the decimal form, that is we know that the value of \[\pi \] is 3.142.
Substituting and simplifying we have,
\[ \Rightarrow \dfrac{{19 \times 3.142}}{{12}}\]
\[ \Rightarrow 4.975\].
Hence \[{285^0}\] is 4.975 rad.
Note: We know that the radian is denoted by ‘rad’. Suppose if they ask us to convert \[\dfrac{{19\pi }}{{12}}\]rad into degree. The value of \[\pi \] radian is equal to \[{180^0}\].
Then 1 rad is equal to \[\dfrac{{180}}{\pi }\] degrees.
So the given \[x\] rad is equal to \[x \times \dfrac{{180}}{\pi }\] degrees.
This is the general formula for converting the angle in radians to degrees.
Then \[\dfrac{{19\pi }}{{12}}\] rad becomes
\[\Rightarrow \dfrac{{19\pi }}{{12}} = \dfrac{{19\pi }}{{12}} \times \dfrac{{180}}{\pi }\] degree
\[ \Rightarrow \dfrac{{19 \times 180}}{{12}}\]
\[ \Rightarrow 19 \times 15\]
\[ \Rightarrow {285^0}\].
Hence \[\dfrac{{19\pi }}{{12}}\]rad is equal to \[{285^0}\] .
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE