Answer
Verified
430.2k+ views
Hint: Degree and radians are two separate units which are used as units for the measurement of angles. A degree is a unit to measure angle. A degree is usually denoted as $ ^ \circ $ . One degree is equal to $ \dfrac{\pi }{{180}} $ radians which approximately equals to $ 0.01746 $ radians. In order to convert any given angle from a measure of its degrees to radian, we have to multiply the value by $ \dfrac{\pi }{{180}} $ . A radian is the angle made at the center of the circle by an arc equal in length to the radius. One radian equals to $ \dfrac{{180}}{\pi } $ degrees which approximately equals to $ {57^ \circ }16' $ . In order to convert any given angle from the measure of its radians to degrees, all we are needed to do is multiply the value by $ \dfrac{{180}}{\pi } $ .
Complete step-by-step answer:
We know that a circle subtends at the center an angle whose radian measure is $ 2\pi $ whereas its degree measure is $ 360 $ , it follows that
$
2\pi \;radian = {360^ \circ } \\
\pi \;radian = {180^ \circ } \;
$
In order to convert a degree into radian, we need to multiply the given degree by $ \dfrac{\pi }{{180}} $ .
$
\Rightarrow - {40^ \circ } \times \dfrac{\pi }{{{{180}^ \circ }}} \\
\Rightarrow - 0.22222\pi \;rad \\
\Rightarrow - 0.698\;rad \;
$
So, the correct answer is “ 0.698 RAD”.
Note: To convert degree into radian we are required to multiply the degree by $ \dfrac{\pi }{{180}} $ . This is usually confused by students with $ \dfrac{{180}}{\pi } $ which is the formula used when we are required to convert radians into degrees. A circle has \[{360^ \circ }\] degree or \[2\pi \] radians. Radians have useful properties in calculus under this we define trigonometric functions with radians as its units they can easily be derived while degrees don’t have such useful properties but helps in divisibility.
Complete step-by-step answer:
We know that a circle subtends at the center an angle whose radian measure is $ 2\pi $ whereas its degree measure is $ 360 $ , it follows that
$
2\pi \;radian = {360^ \circ } \\
\pi \;radian = {180^ \circ } \;
$
In order to convert a degree into radian, we need to multiply the given degree by $ \dfrac{\pi }{{180}} $ .
$
\Rightarrow - {40^ \circ } \times \dfrac{\pi }{{{{180}^ \circ }}} \\
\Rightarrow - 0.22222\pi \;rad \\
\Rightarrow - 0.698\;rad \;
$
So, the correct answer is “ 0.698 RAD”.
Note: To convert degree into radian we are required to multiply the degree by $ \dfrac{\pi }{{180}} $ . This is usually confused by students with $ \dfrac{{180}}{\pi } $ which is the formula used when we are required to convert radians into degrees. A circle has \[{360^ \circ }\] degree or \[2\pi \] radians. Radians have useful properties in calculus under this we define trigonometric functions with radians as its units they can easily be derived while degrees don’t have such useful properties but helps in divisibility.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE