How do you convert \[\dfrac{2}{3}\pi \] radians to degrees?
Answer
Verified
441.9k+ views
Hint: We need to know the formula for converting the radian measures into degree measures. We need to substitute the given radian value in that formula. By using arithmetic operations we can easily find the answer. We need to find the final answer in degree measures, so we need to know the degree value \[\pi \].
Complete step-by-step solution:
In this question, we would convert the radian term \[\dfrac{2}{3}\pi \] to a degree. For that, the formula which is given below will help us.
The formula for converting radian measures to degree measures is,
Degree \[ = \]Radian\[ \times \dfrac{{{{180}^ \circ }}}{\pi }\]\[ \to equation\left( 1 \right)\]
So, we would find
\[\dfrac{{2\pi }}{3}\]Radian\[ \to ?\] degree
In this problem we have the radian value, we would convert it into degree value.
We have,
Radian \[ = \dfrac{{2\pi }}{3}\]
So, the equation\[\left( 1 \right)\] becomes,
\[equation\left( 1 \right) \to \] Degree\[ = \]Radians\[ \times \dfrac{{{{180}^ \circ }}}{\pi }\]
Degree\[ = \dfrac{{2\pi }}{3}\]\[ \times \dfrac{{{{180}^ \circ }}}{\pi }\]
We know that \[\left( {\pi = {{180}^ \circ }} \right)\].
\[\pi \] in the numerator and\[\pi \] the denominator can be cancelled each other. So we do not need to substitute the value of\[\pi \]in-degree measures. So, we get
Degree\[ = \dfrac{2}{3} \times {180^ \circ }\]
By solving the above equation, we get
Degree\[ = 2 \times {60^ \circ }\]
Degree\[ = {120^ \circ }\]
So, the final answer is,
\[\dfrac{{2\pi }}{3} = {120^ \circ }\]
Note: Note that this problem can also be solved by substituting the value of\[\pi \]is equal to\[{180^ \circ }\]in the given problem. By using this method we can easily find the answer. This type of questions involves the operation of addition/ subtraction/ multiplication/ division. Note that each radian value must be in the form of\[\pi \] and in each degree value the degree symbol will be present on that term. To make an easy calculation first we would try to cancel the term\[\pi \]in the formula, next we can easily find the answer using normal multiplication and division.
Complete step-by-step solution:
In this question, we would convert the radian term \[\dfrac{2}{3}\pi \] to a degree. For that, the formula which is given below will help us.
The formula for converting radian measures to degree measures is,
Degree \[ = \]Radian\[ \times \dfrac{{{{180}^ \circ }}}{\pi }\]\[ \to equation\left( 1 \right)\]
So, we would find
\[\dfrac{{2\pi }}{3}\]Radian\[ \to ?\] degree
In this problem we have the radian value, we would convert it into degree value.
We have,
Radian \[ = \dfrac{{2\pi }}{3}\]
So, the equation\[\left( 1 \right)\] becomes,
\[equation\left( 1 \right) \to \] Degree\[ = \]Radians\[ \times \dfrac{{{{180}^ \circ }}}{\pi }\]
Degree\[ = \dfrac{{2\pi }}{3}\]\[ \times \dfrac{{{{180}^ \circ }}}{\pi }\]
We know that \[\left( {\pi = {{180}^ \circ }} \right)\].
\[\pi \] in the numerator and\[\pi \] the denominator can be cancelled each other. So we do not need to substitute the value of\[\pi \]in-degree measures. So, we get
Degree\[ = \dfrac{2}{3} \times {180^ \circ }\]
By solving the above equation, we get
Degree\[ = 2 \times {60^ \circ }\]
Degree\[ = {120^ \circ }\]
So, the final answer is,
\[\dfrac{{2\pi }}{3} = {120^ \circ }\]
Note: Note that this problem can also be solved by substituting the value of\[\pi \]is equal to\[{180^ \circ }\]in the given problem. By using this method we can easily find the answer. This type of questions involves the operation of addition/ subtraction/ multiplication/ division. Note that each radian value must be in the form of\[\pi \] and in each degree value the degree symbol will be present on that term. To make an easy calculation first we would try to cancel the term\[\pi \]in the formula, next we can easily find the answer using normal multiplication and division.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE