What is the correct dipole moment of $N{{H}_{3}}$ and $N{{F}_{3}}$ respectively?
(A)- $4.90\times {{10}^{-30}}$ C m and $0.80\times {{10}^{-30}}$ C m
(B)- $0.80\times {{10}^{-30}}$ C m and $4.90\times {{10}^{-30}}$ C m
(C)- $4.90\times {{10}^{-30}}$ C m and $4.90\times {{10}^{-30}}$ C m
(D)- $0.80\times {{10}^{-30}}$ C m and $0.80\times {{10}^{-30}}$ C m
Answer
Verified
479.1k+ views
Hint: Dipole moment is a measure of polarity of a bond. It is the product of the charges and the distance between partial charges. It is a vector quantity and its direction is always given from less electronegative atom to more electronegative atom.
It is generally expressed in debye (D) and 1 D = $3.33564\times {{10}^{-30}}$ C m.
Dipole moment of polar molecules containing lone pairs is the vector sum of dipole of lone pair and net dipole moments of bonds.
Complete answer:
Both $N{{H}_{3}}$ and $N{{F}_{3}}$ have trigonal pyramidal shape.
The dipole moment of lone pairs in $N{{H}_{3}}$ and $N{{F}_{3}}$ is away from nitrogen.
Dipole moment of $N{{H}_{3}}$
We know that nitrogen is more electronegative than hydrogen. Therefore, the dipole moment of $N-H$bond will be form H to N. The net dipole moment of three $N-H$ bond will add up to 1.4 D. As we know that 1 D = $3.33564\times {{10}^{-34}}$ C m.
Then, 1.4 D will be equal to $1.4\times 3.33564\times {{10}^{-30}}$ C m, i.e. $4.90\times {{10}^{-30}}$ C m.
Dipole moment of $N{{F}_{3}}$
Electronegativity of F is more than that of N, thus the direction of dipole moment of $N-F$ bond will be from F to N. As we can see that the direction of $N-F$ bond is opposite to that of the lone pair on N atoms. So, the net dipole moment of $N{{F}_{3}}$ has been found to be 0.24 D.
Multiplying 0.24 D with $3.33564\times {{10}^{-30}}$ C m, we get the dipole moment of $0.80\times {{10}^{-30}}$C m.
So, the correct answer is “Option A”.
Note: The dipole moment of lone pairs in $N{{H}_{3}}$ and $N{{F}_{3}}$ is away from nitrogen.
Dipole moment of $N{{H}_{3}}$
We know that nitrogen is more electronegative than hydrogen. Therefore, the dipole moment of $N-H$bond will be form H to N. The net dipole moment of three $N-H$ bond will add up to 1.4 D. As we know that 1 D = $3.33564\times {{10}^{-34}}$ C m.
Then, 1.4 D will be equal to $1.4\times 3.33564\times {{10}^{-30}}$ C m, i.e. $4.90\times {{10}^{-30}}$ C m.
Dipole moment of $N{{F}_{3}}$
Electronegativity of F is more than that of N, thus the direction of dipole moment of $N-F$ bond will be from F to N. As we can see that the direction of $N-F$ bond is opposite to that of the lone pair on N atoms. So, the net dipole moment of $N{{F}_{3}}$ has been found to be 0.24 D.
Multiplying 0.24 D with $3.33564\times {{10}^{-30}}$ C m, we get the dipole moment of $0.80\times {{10}^{-30}}$C m.
It is generally expressed in debye (D) and 1 D = $3.33564\times {{10}^{-30}}$ C m.
Dipole moment of polar molecules containing lone pairs is the vector sum of dipole of lone pair and net dipole moments of bonds.
Complete answer:
Both $N{{H}_{3}}$ and $N{{F}_{3}}$ have trigonal pyramidal shape.
The dipole moment of lone pairs in $N{{H}_{3}}$ and $N{{F}_{3}}$ is away from nitrogen.
Dipole moment of $N{{H}_{3}}$
We know that nitrogen is more electronegative than hydrogen. Therefore, the dipole moment of $N-H$bond will be form H to N. The net dipole moment of three $N-H$ bond will add up to 1.4 D. As we know that 1 D = $3.33564\times {{10}^{-34}}$ C m.
Then, 1.4 D will be equal to $1.4\times 3.33564\times {{10}^{-30}}$ C m, i.e. $4.90\times {{10}^{-30}}$ C m.
Dipole moment of $N{{F}_{3}}$
Electronegativity of F is more than that of N, thus the direction of dipole moment of $N-F$ bond will be from F to N. As we can see that the direction of $N-F$ bond is opposite to that of the lone pair on N atoms. So, the net dipole moment of $N{{F}_{3}}$ has been found to be 0.24 D.
Multiplying 0.24 D with $3.33564\times {{10}^{-30}}$ C m, we get the dipole moment of $0.80\times {{10}^{-30}}$C m.
So, the correct answer is “Option A”.
Note: The dipole moment of lone pairs in $N{{H}_{3}}$ and $N{{F}_{3}}$ is away from nitrogen.
Dipole moment of $N{{H}_{3}}$
We know that nitrogen is more electronegative than hydrogen. Therefore, the dipole moment of $N-H$bond will be form H to N. The net dipole moment of three $N-H$ bond will add up to 1.4 D. As we know that 1 D = $3.33564\times {{10}^{-34}}$ C m.
Then, 1.4 D will be equal to $1.4\times 3.33564\times {{10}^{-30}}$ C m, i.e. $4.90\times {{10}^{-30}}$ C m.
Dipole moment of $N{{F}_{3}}$
Electronegativity of F is more than that of N, thus the direction of dipole moment of $N-F$ bond will be from F to N. As we can see that the direction of $N-F$ bond is opposite to that of the lone pair on N atoms. So, the net dipole moment of $N{{F}_{3}}$ has been found to be 0.24 D.
Multiplying 0.24 D with $3.33564\times {{10}^{-30}}$ C m, we get the dipole moment of $0.80\times {{10}^{-30}}$C m.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
State the laws of reflection of light