How many cubes are needed to make the solid?
Answer
Verified
478.2k+ views
Hint: This problem can be solved by visual and mental processing. Count the number of cubes in the first layer and the same number of cubes will be there in the next layers.
Complete step-by-step answer:
The figure of the solid which made up of number of cubes is shown below,
let's assume the number of cubes present in the solid be x
If we analyze the first layer of the cube. There are 3 cubes visible from the front. And there will be three cubes at the back. So total cubes in one layer is given by
$
n = 3 + 3 \\
n = 6 \\
$
If we analyze the second layer of the cube. There are 3 cubes visible from the front. And there will be three cubes at the back. So total cubes in one layer is given by
$
m = 3 + 3 \\
m = 6 \\
$
Similarly, if we analyze the third layer of the cube. There are 3 cubes visible from the front. And there will be three cubes at the back. So total cubes in one layer is given by
$
o = 3 + 3 \\
o = 6 \\
$
Thus the total number of cubes that will make up the whole solid figure is given by,
$
x = m + n + o \\
x = 6 + 6 + 6 \\
x = 18 \\
$
Note: The analysis of the solid from the front shows that 6 cubes are visible.
As one layer of the cube is also present at the back and the solid is symmetrical. Therefore, the same number of cubes will be present at the back also.
Thus, 6 cubes are at the back. So the total number of cubes required to make the solid is $6 + 6 = 12$.
Complete step-by-step answer:
The figure of the solid which made up of number of cubes is shown below,
let's assume the number of cubes present in the solid be x
If we analyze the first layer of the cube. There are 3 cubes visible from the front. And there will be three cubes at the back. So total cubes in one layer is given by
$
n = 3 + 3 \\
n = 6 \\
$
If we analyze the second layer of the cube. There are 3 cubes visible from the front. And there will be three cubes at the back. So total cubes in one layer is given by
$
m = 3 + 3 \\
m = 6 \\
$
Similarly, if we analyze the third layer of the cube. There are 3 cubes visible from the front. And there will be three cubes at the back. So total cubes in one layer is given by
$
o = 3 + 3 \\
o = 6 \\
$
Thus the total number of cubes that will make up the whole solid figure is given by,
$
x = m + n + o \\
x = 6 + 6 + 6 \\
x = 18 \\
$
Note: The analysis of the solid from the front shows that 6 cubes are visible.
As one layer of the cube is also present at the back and the solid is symmetrical. Therefore, the same number of cubes will be present at the back also.
Thus, 6 cubes are at the back. So the total number of cubes required to make the solid is $6 + 6 = 12$.
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE