Answer
Verified
444k+ views
Hint:The de Broglie wavelength of a particle indicates the length scale at which wave-like properties are important for that particle. Therefore, if we look at every moving particle whether it is microscopic or macroscopic it will have a wavelength. In cases of macroscopic objects, the wave nature of matter can be detected or it is visible.
Complete step-by-step solution:The concept that matter behaves like a wave was proposed by Louis de Broglie in 1924. It is also referred to as the de Broglie hypothesis. Matter waves are referred to as de Broglie waves. De Broglie equation states that a matter can act as waves much like light and radiation which also behave as waves and particles. The equation further explains that a beam of electrons can also be diffracted just like a beam of light.
De Broglie wavelength is given by the formula; $\lambda = \dfrac{h}{{mv}}$
From the question the data filtered out is: $mass(m) = 0.06kg$,$velocity(v) = 10m/s$ and
h = $6.63 \times {10^{ - 34}}Js$. Substituting the values of mass, velocity and Planck’s constant in the formula for de-Broglie wavelength we get:
$\lambda = \dfrac{{6.6 \times {{10}^{ - 34}}}}{{0.06 \times 10}} = 1.1 \times {10^{ - 33}}m$
Hence the approx. value of de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 meters per second is $\lambda = {10^{ - 33}}m$.
Hence the correct option is (B).
Note:Electron has the least mass, so its wavelength is maximum. The significance of de Broglie relation is that it is more useful to microscopic, fundamental particles like electrons.
Complete step-by-step solution:The concept that matter behaves like a wave was proposed by Louis de Broglie in 1924. It is also referred to as the de Broglie hypothesis. Matter waves are referred to as de Broglie waves. De Broglie equation states that a matter can act as waves much like light and radiation which also behave as waves and particles. The equation further explains that a beam of electrons can also be diffracted just like a beam of light.
De Broglie wavelength is given by the formula; $\lambda = \dfrac{h}{{mv}}$
From the question the data filtered out is: $mass(m) = 0.06kg$,$velocity(v) = 10m/s$ and
h = $6.63 \times {10^{ - 34}}Js$. Substituting the values of mass, velocity and Planck’s constant in the formula for de-Broglie wavelength we get:
$\lambda = \dfrac{{6.6 \times {{10}^{ - 34}}}}{{0.06 \times 10}} = 1.1 \times {10^{ - 33}}m$
Hence the approx. value of de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 meters per second is $\lambda = {10^{ - 33}}m$.
Hence the correct option is (B).
Note:Electron has the least mass, so its wavelength is maximum. The significance of de Broglie relation is that it is more useful to microscopic, fundamental particles like electrons.
Recently Updated Pages
During the electrolysis of sodium ethanoate the gas class 11 maths JEE_Main
1bromo3chlorocyclobutane when treated with two equivalents class 11 chem sec 1 JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
A uniform rod of length L and mass M is pivoted at class 11 physics JEE_Main
The locus of the midpoint of the chord of contact of class 11 maths JEE_Main
The number of common tangents to the circles x2 + y2 class 11 maths JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE