Answer
Verified
396.6k+ views
Hint: In order to solve this question, we are going to first write the formula for the de-Broglie wavelength of any particle, then, we will relate it with the information given that is the case of an\[\alpha - \]particle accelerated through a potential difference\[V\], then, we will put the values in the final equation.
Formula used:
The de-Broglie wavelength of any particle is given by the formula
\[\lambda = \dfrac{h}{{mv}}\]
Where, \[m\]is the mass of that particle, \[v\]is the velocity of that particle.
Complete step-by-step solution:
We know that the de-Broglie wavelength of any particle is given by the formula
\[\lambda = \dfrac{h}{{mv}}\]
Where, \[m\]is the mass of that particle, \[v\]is the velocity of that particle.
Now, this can also be written as
\[\lambda = \dfrac{h}{p}\]
We know that the momentum-energy relation can be expressed as
\[p = \sqrt {2mE} \]
Here, the\[\alpha - \]particle is accelerated through the potential difference of\[V\]volts. It is having a charge equal to \[2e\]
Hence, the energy becomes equal to \[E = 2eV\]
Thus, the momentum relation for an\[\alpha - \]particle becomes equal to:
\[p = \sqrt {4meV} \]
Thus, the de-Broglie wavelength of the\[\alpha - \]particle is equal to
\[\lambda = \dfrac{h}{{\sqrt {4meV} }}\]
Now,
$
h = 6.626 \times {10^{ - 34}}Js \\
m = 4 \times 1.6 \times {10^{ - 27}}Kg \\
e = 1.6 \times {10^{ - 19}}C \\ $
Putting these values in the relation, we get
\[\lambda = \dfrac{{6.626 \times {{10}^{ - 34}}Js}}{{\sqrt {4 \times 4 \times 1.6 \times {{10}^{ - 27}} \times 1.6 \times {{10}^{ - 19}}V} }}\]
Solving this, we get
\[\lambda = \dfrac{{1.01 \times {{10}^{ - 11}}}}{{\sqrt V }}\]
This implies that the wavelength is equal to
\[\lambda = \dfrac{{0.101}}{{\sqrt V }}\mathop A\limits^{\,\,\,\,\,0} \]
Note: It is important to note the step where the momentum is related with the potential difference through which is applied across the \[\alpha - \]particle. Putting off the values keeping in mind that for the \[\alpha - \]particle, charge is twice that of the electron and the mass is four times that of an electron is also important.
Formula used:
The de-Broglie wavelength of any particle is given by the formula
\[\lambda = \dfrac{h}{{mv}}\]
Where, \[m\]is the mass of that particle, \[v\]is the velocity of that particle.
Complete step-by-step solution:
We know that the de-Broglie wavelength of any particle is given by the formula
\[\lambda = \dfrac{h}{{mv}}\]
Where, \[m\]is the mass of that particle, \[v\]is the velocity of that particle.
Now, this can also be written as
\[\lambda = \dfrac{h}{p}\]
We know that the momentum-energy relation can be expressed as
\[p = \sqrt {2mE} \]
Here, the\[\alpha - \]particle is accelerated through the potential difference of\[V\]volts. It is having a charge equal to \[2e\]
Hence, the energy becomes equal to \[E = 2eV\]
Thus, the momentum relation for an\[\alpha - \]particle becomes equal to:
\[p = \sqrt {4meV} \]
Thus, the de-Broglie wavelength of the\[\alpha - \]particle is equal to
\[\lambda = \dfrac{h}{{\sqrt {4meV} }}\]
Now,
$
h = 6.626 \times {10^{ - 34}}Js \\
m = 4 \times 1.6 \times {10^{ - 27}}Kg \\
e = 1.6 \times {10^{ - 19}}C \\ $
Putting these values in the relation, we get
\[\lambda = \dfrac{{6.626 \times {{10}^{ - 34}}Js}}{{\sqrt {4 \times 4 \times 1.6 \times {{10}^{ - 27}} \times 1.6 \times {{10}^{ - 19}}V} }}\]
Solving this, we get
\[\lambda = \dfrac{{1.01 \times {{10}^{ - 11}}}}{{\sqrt V }}\]
This implies that the wavelength is equal to
\[\lambda = \dfrac{{0.101}}{{\sqrt V }}\mathop A\limits^{\,\,\,\,\,0} \]
Note: It is important to note the step where the momentum is related with the potential difference through which is applied across the \[\alpha - \]particle. Putting off the values keeping in mind that for the \[\alpha - \]particle, charge is twice that of the electron and the mass is four times that of an electron is also important.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE