
Define a molecule. How many molecules are present in
1.\[9\] grams of water
2.\[17\] grams of ammonia
Answer
510k+ views
Hint: An atom is considered as the smallest part of an element. We can say that it is a basic ingredient of a common matter. Atom is further divided into three parts i.e., electrons, protons and neutrons.
Complete answer:
Molecule: It is a group of two or more atoms chemically bonded together and forms the smallest basic unit of a compound which can participate in a chemical reaction. To find the number of molecules in any compound, we need to multiply the number of moles of that compound with the Avogadro’s constant.
Number of molecules \[ = \]number of moles \[ \times \,6.023 \times \,{10^{23}}\,\, - (i)\]
Number of moles: It is the ratio of given mass of the compound to its molecular mass. The expression to find number of moles is given below:
\[n = \dfrac{m}{M}\,\, - (ii)\]
Where, \[m\]is the given mass of the compound and \[M\]is the molar mass of the given compound.
Number of molecules in \[9\] grams of water.
Given mass of water molecule \[ = 9g\]
Molar mass of water molecule \[ = 18g\]
Using equation \[(ii)\] for calculating number of moles of water:
Number of moles \[n = \dfrac{9}{{18}} \Rightarrow 0.5\]
Using equation \[(i)\] for calculating the number of molecules of water
Number of molecules \[ = n \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 0.5 \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 3.01 \times {10^{23}}\]
Hence, number of molecules in \[9\] grams of water \[ = 3.01 \times {10^{23}}\]molecules.
Number of molecules in \[17\] grams of ammonia.
Given mass of ammonia \[ = 17g\]
Molar mass of water molecule \[ = 17g\]
Using equation \[(ii)\] for calculating number of moles of water:
Number of moles \[n = \dfrac{{17}}{{17}} \Rightarrow 1\]
Using equation \[(i)\] for calculating the number of molecules of water
Number of molecules \[ = n \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 1 \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 6.023 \times {10^{23}}\]
Hence, the number of molecules in \[17\] grams of ammonia \[ = 6.023 \times {10^{23}}\] molecules.
Note:
Avogadro’s number is the proportionality factor which gives a relation between the number of particles or molecules in a sample when a fixed amount of that sample is taken. Its SI unit is the reciprocal to that of mole.
Complete answer:
Molecule: It is a group of two or more atoms chemically bonded together and forms the smallest basic unit of a compound which can participate in a chemical reaction. To find the number of molecules in any compound, we need to multiply the number of moles of that compound with the Avogadro’s constant.
Number of molecules \[ = \]number of moles \[ \times \,6.023 \times \,{10^{23}}\,\, - (i)\]
Number of moles: It is the ratio of given mass of the compound to its molecular mass. The expression to find number of moles is given below:
\[n = \dfrac{m}{M}\,\, - (ii)\]
Where, \[m\]is the given mass of the compound and \[M\]is the molar mass of the given compound.
Number of molecules in \[9\] grams of water.
Given mass of water molecule \[ = 9g\]
Molar mass of water molecule \[ = 18g\]
Using equation \[(ii)\] for calculating number of moles of water:
Number of moles \[n = \dfrac{9}{{18}} \Rightarrow 0.5\]
Using equation \[(i)\] for calculating the number of molecules of water
Number of molecules \[ = n \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 0.5 \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 3.01 \times {10^{23}}\]
Hence, number of molecules in \[9\] grams of water \[ = 3.01 \times {10^{23}}\]molecules.
Number of molecules in \[17\] grams of ammonia.
Given mass of ammonia \[ = 17g\]
Molar mass of water molecule \[ = 17g\]
Using equation \[(ii)\] for calculating number of moles of water:
Number of moles \[n = \dfrac{{17}}{{17}} \Rightarrow 1\]
Using equation \[(i)\] for calculating the number of molecules of water
Number of molecules \[ = n \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 1 \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 6.023 \times {10^{23}}\]
Hence, the number of molecules in \[17\] grams of ammonia \[ = 6.023 \times {10^{23}}\] molecules.
Note:
Avogadro’s number is the proportionality factor which gives a relation between the number of particles or molecules in a sample when a fixed amount of that sample is taken. Its SI unit is the reciprocal to that of mole.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

