Answer
Verified
429.9k+ views
Hint: When a charged particle is kept near to the other charged particle, both the charges experience a force. It may be attractive if the charges are of opposite nature and it may be repulsive if the charges are alike. The charge which is brought near to the other charge is called a test charged particle and the other charge is called a source charged particle. The electric field intensity tells us about the magnitude and direction of the force experienced by the charged particle.
When the two equal charges but of opposite nature are kept at a very short distance the system of two charged particles is called an electric dipole.
Complete step by step answer:
Step 1:
Definition- the electric field intensity is defined as the ratio of the force $\overrightarrow F $ experienced by the charge and the amount of the charge $q$ .
$\therefore \overrightarrow E = \dfrac{{\overrightarrow F }}{q}$
Force is a vector quantity.
The SI unit of the electric field intensity is volt/meter or V/m.
The coulomb’s law says that the force between two charges is given by $F = k\dfrac{{qQ}}{{{r^2}}}$ where $k = \dfrac{1}{{4\pi {\varepsilon _0}}}$ is a constant and $r$ is the distance from the source charge. Therefore, the above equation can be written as
$\therefore \overrightarrow E = k\dfrac{{qQ}}{{{r^2}}}\dfrac{1}{q}$
$ \Rightarrow \overrightarrow E = k\dfrac{Q}{{{r^2}}}$
$Q$ is the source charge.
Step 2:
The length of the electric dipole is $2a$ therefore the distance of the midpoint from each charged particle is $a$ . In the middle of the dipole, the electric fields contributed by both charges are in the same direction; they are both pointing toward the negative charge. Thus, the magnitude of the electric field is the sum of the contribution of the two charges. Let the amount of charge be $q$ .
$\therefore E = k\dfrac{q}{{{a^2}}} + k\dfrac{q}{{{a^2}}}$
$ \Rightarrow E = k\dfrac{{2q}}{{{a^2}}}$, where $k = \dfrac{1}{{4\pi {\varepsilon _0}}}$
This is the electric field intensity due to the electric dipole of length $2a$ .
Note: The derivation above shows that the test charge $q$ was canceled from both the numerator and denominator of the equation. The new formula for electric field intensity expresses the field strength in terms of the two variables that affect it. The electric field strength is dependent upon the quantity of charge on the source charge $Q$ and the distance of separation $r$ from the source charge.
When the two equal charges but of opposite nature are kept at a very short distance the system of two charged particles is called an electric dipole.
Complete step by step answer:
Step 1:
Definition- the electric field intensity is defined as the ratio of the force $\overrightarrow F $ experienced by the charge and the amount of the charge $q$ .
$\therefore \overrightarrow E = \dfrac{{\overrightarrow F }}{q}$
Force is a vector quantity.
The SI unit of the electric field intensity is volt/meter or V/m.
The coulomb’s law says that the force between two charges is given by $F = k\dfrac{{qQ}}{{{r^2}}}$ where $k = \dfrac{1}{{4\pi {\varepsilon _0}}}$ is a constant and $r$ is the distance from the source charge. Therefore, the above equation can be written as
$\therefore \overrightarrow E = k\dfrac{{qQ}}{{{r^2}}}\dfrac{1}{q}$
$ \Rightarrow \overrightarrow E = k\dfrac{Q}{{{r^2}}}$
$Q$ is the source charge.
Step 2:
The length of the electric dipole is $2a$ therefore the distance of the midpoint from each charged particle is $a$ . In the middle of the dipole, the electric fields contributed by both charges are in the same direction; they are both pointing toward the negative charge. Thus, the magnitude of the electric field is the sum of the contribution of the two charges. Let the amount of charge be $q$ .
$\therefore E = k\dfrac{q}{{{a^2}}} + k\dfrac{q}{{{a^2}}}$
$ \Rightarrow E = k\dfrac{{2q}}{{{a^2}}}$, where $k = \dfrac{1}{{4\pi {\varepsilon _0}}}$
This is the electric field intensity due to the electric dipole of length $2a$ .
Note: The derivation above shows that the test charge $q$ was canceled from both the numerator and denominator of the equation. The new formula for electric field intensity expresses the field strength in terms of the two variables that affect it. The electric field strength is dependent upon the quantity of charge on the source charge $Q$ and the distance of separation $r$ from the source charge.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE