Answer
Verified
389.5k+ views
Hint: We will look at the definition of signum function and with the help of that we will plot graph. And then from looking at the graph we can find the value of the domain which will be the values of x for which the function is defined and the range will be the possible values of the function.
Complete step by step solution:
Let’s first look at the definition of signum function.
Signum function is often defined simply as 1 for x > 0 and -1 for x < 0. And for x = 0 it is 0.
$f\left( x \right)=\left\{ \begin{align}
& \frac{\left| x \right|}{x},\text{ if }x\ne 0 \\
& 0,\text{ if }x=0 \\
\end{align} \right.$
$f\left( x \right)=\left\{ \begin{align}
& 1,\text{ if }x>0 \\
& 0,\text{ if }x=0 \\
& -1,\text{ if }x<0\text{ } \\
\end{align} \right.$
Now let’s look at the graph of signum function.
In the graph we can see that point A and B are open, hence these points are not included. So at x = 0, point E is defined and it gives 0.
From the above graph and the given function also we can see that the domain is the value of x for which the function is defined, it is defined for all values of x.
Therefore the domain is $\left( -\infty ,\infty \right)$
The range is the possible value of y, we can see from the graph that the values can be -1, 0, and 1.
Therefore, range is $\left\{ -1,0,1 \right\}$
Note: In the solution we have given two forms of signum function, one can break the value of $\left| x \right|$ for x>0 and x<0, and then put the equation to convert it in the second form. So, one should not be confused with such issues.
Complete step by step solution:
Let’s first look at the definition of signum function.
Signum function is often defined simply as 1 for x > 0 and -1 for x < 0. And for x = 0 it is 0.
$f\left( x \right)=\left\{ \begin{align}
& \frac{\left| x \right|}{x},\text{ if }x\ne 0 \\
& 0,\text{ if }x=0 \\
\end{align} \right.$
$f\left( x \right)=\left\{ \begin{align}
& 1,\text{ if }x>0 \\
& 0,\text{ if }x=0 \\
& -1,\text{ if }x<0\text{ } \\
\end{align} \right.$
Now let’s look at the graph of signum function.
In the graph we can see that point A and B are open, hence these points are not included. So at x = 0, point E is defined and it gives 0.
From the above graph and the given function also we can see that the domain is the value of x for which the function is defined, it is defined for all values of x.
Therefore the domain is $\left( -\infty ,\infty \right)$
The range is the possible value of y, we can see from the graph that the values can be -1, 0, and 1.
Therefore, range is $\left\{ -1,0,1 \right\}$
Note: In the solution we have given two forms of signum function, one can break the value of $\left| x \right|$ for x>0 and x<0, and then put the equation to convert it in the second form. So, one should not be confused with such issues.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE