Define signum function. Draw the graph and write its domain and range.
Answer
Verified
413.2k+ views
Hint: We will look at the definition of signum function and with the help of that we will plot graph. And then from looking at the graph we can find the value of the domain which will be the values of x for which the function is defined and the range will be the possible values of the function.
Complete step by step solution:
Let’s first look at the definition of signum function.
Signum function is often defined simply as 1 for x > 0 and -1 for x < 0. And for x = 0 it is 0.
$f\left( x \right)=\left\{ \begin{align}
& \frac{\left| x \right|}{x},\text{ if }x\ne 0 \\
& 0,\text{ if }x=0 \\
\end{align} \right.$
$f\left( x \right)=\left\{ \begin{align}
& 1,\text{ if }x>0 \\
& 0,\text{ if }x=0 \\
& -1,\text{ if }x<0\text{ } \\
\end{align} \right.$
Now let’s look at the graph of signum function.
In the graph we can see that point A and B are open, hence these points are not included. So at x = 0, point E is defined and it gives 0.
From the above graph and the given function also we can see that the domain is the value of x for which the function is defined, it is defined for all values of x.
Therefore the domain is $\left( -\infty ,\infty \right)$
The range is the possible value of y, we can see from the graph that the values can be -1, 0, and 1.
Therefore, range is $\left\{ -1,0,1 \right\}$
Note: In the solution we have given two forms of signum function, one can break the value of $\left| x \right|$ for x>0 and x<0, and then put the equation to convert it in the second form. So, one should not be confused with such issues.
Complete step by step solution:
Let’s first look at the definition of signum function.
Signum function is often defined simply as 1 for x > 0 and -1 for x < 0. And for x = 0 it is 0.
$f\left( x \right)=\left\{ \begin{align}
& \frac{\left| x \right|}{x},\text{ if }x\ne 0 \\
& 0,\text{ if }x=0 \\
\end{align} \right.$
$f\left( x \right)=\left\{ \begin{align}
& 1,\text{ if }x>0 \\
& 0,\text{ if }x=0 \\
& -1,\text{ if }x<0\text{ } \\
\end{align} \right.$
Now let’s look at the graph of signum function.
In the graph we can see that point A and B are open, hence these points are not included. So at x = 0, point E is defined and it gives 0.
From the above graph and the given function also we can see that the domain is the value of x for which the function is defined, it is defined for all values of x.
Therefore the domain is $\left( -\infty ,\infty \right)$
The range is the possible value of y, we can see from the graph that the values can be -1, 0, and 1.
Therefore, range is $\left\{ -1,0,1 \right\}$
Note: In the solution we have given two forms of signum function, one can break the value of $\left| x \right|$ for x>0 and x<0, and then put the equation to convert it in the second form. So, one should not be confused with such issues.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE