
Define skew lines. Using only the vector approach, find the shortest distance between the following two skew lines.
$\begin{align}
& \vec{r}=\left( 8+3\lambda \right)\hat{i}-\left( 9+16\lambda \right)\hat{j}+\left( 10+7\lambda \right)\hat{k} \\
& \vec{r}=15\hat{i}+29\hat{j}+5\hat{k}+\mu \left( 3\hat{i}+8\hat{j}-5\hat{k} \right) \\
\end{align}$
Answer
581.7k+ views
Hint: The shortest distance between two skew line equations ${{\vec{r}}_{1}}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}}$ and ${{\vec{r}}_{2}}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}}$ is $\left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right|$. The vector $\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)$ can be found by $\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{b}_{11}} & {{b}_{12}} & {{b}_{13}} \\
{{b}_{21}} & {{b}_{22}} & {{b}_{23}} \\
\end{matrix} \right|$ , where ${{b}_{11}},{{b}_{12}},{{b}_{13}}$ are the components of ${{\vec{b}}_{1}}$ and ${{b}_{21}},{{b}_{22}},{{b}_{23}}$ are the components of ${{\vec{b}}_{2}}$ respectively.
Substituting all the values we can get the shortest distance.
Complete step-by-step answer:
We can define skew lines as follows,
Skew lines are straight lines in a three-dimensional form which are not parallel and do not cross.
Let’s consider the first skew line to be ${{\vec{r}}_{1}}=\left( 8+3\lambda \right)\hat{i}-\left( 9+16\lambda \right)\hat{j}+\left( 10+7\lambda \right)\hat{k}....................(i)$
Let’s consider the second skew line to be \[{{\vec{r}}_{2}}=15\hat{i}+29\hat{j}+5\hat{k}+\mu \left( 3\hat{i}+8\hat{j}-5\hat{k} \right)....................(ii)\]
As we can see that both the equations are in different forms. Let us convert equation (i) in equation (ii) we get,
${{\vec{r}}_{1}}=8\hat{i}-9\hat{j}+10\hat{k}+\lambda \left( 3\hat{i}-16\hat{j}+7\hat{k} \right)....................(iii)$
Now, comparing equation (ii) and equation (iii) with ${{\vec{r}}_{1}}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}}$ and ${{\vec{r}}_{2}}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}}$ we get the values to be as follows,
$\begin{align}
& {{{\vec{a}}}_{1}}=8\hat{i}-9\hat{j}+10\hat{k}...................(iv) \\
& {{{\vec{b}}}_{1}}=3\hat{i}-16\hat{j}+7\hat{k}...................(v) \\
& {{{\vec{a}}}_{2}}=15\hat{i}+29\hat{j}+5\hat{k}...................(vi) \\
& {{{\vec{b}}}_{2}}=3\hat{i}+8\hat{j}-5\hat{k}...................(vii) \\
\end{align}$
The shortest distance between two skew line equations ${{\vec{r}}_{1}}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}}$ and ${{\vec{r}}_{2}}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}}$ is $\left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right|$
Let us first find the value of $\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)$. Substituting the values from equation (vi) and (iv) we get,
$\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=\left( 15\hat{i}+29\hat{j}+5\hat{k} \right)-\left( 8\hat{i}-9\hat{j}+10\hat{k} \right)$
Solving the equation, we get,
$\begin{align}
& \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=\left( 15-8 \right)\hat{i}+\left( 29-\left( -9 \right) \right)\hat{j}+\left( 5-10 \right)\hat{k} \\
& \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=7\hat{i}+38\hat{j}-5\hat{k}.....................(viii) \\
\end{align}$
Now, let's find the value of $\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)$ . Substituting the values from the equation (v) and (vii) we get,
$\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
3 & -16 & 7 \\
3 & 8 & -5 \\
\end{matrix} \right|$
Solving the above equation we get,
$\begin{align}
& \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)=\left[ \left( -16\times -5 \right)-\left( 7\times 8 \right) \right]\hat{i}-\left[ \left( 3\times -5 \right)-\left( 7\times 3 \right) \right]\hat{j}+\left[ \left( 3\times 8 \right)-\left( 3\times -16 \right) \right]\hat{k} \\
& \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)=\left[ 80-56 \right]\hat{i}-\left[ -15-21 \right]\hat{j}+\left[ 24+48 \right]\hat{k} \\
& \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)=24\hat{i}+36\hat{j}+72\hat{k}....................\left( ix \right) \\
\end{align}$
Now, let's find the value of $\left| \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right) \right|$.
The magnitude of the $\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)$ can be found as follows,
$\left| \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right) \right|=\sqrt{{{\left( \text{Coefficient of }\hat{i} \right)}^{2}}+{{\left( \text{Coefficient of }\hat{j} \right)}^{2}}+{{\left( \text{Coefficient of }\hat{k} \right)}^{2}}}$
Finding the magnitude of the vector we get,
$\left| \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right) \right|=\left| 24\hat{i}+36\hat{j}+72\hat{k} \right|$
Solving the above equation we get,
$\begin{align}
& \left| \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right) \right|=\sqrt{{{24}^{2}}+{{36}^{2}}+{{72}^{2}}} \\
& \left| \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right) \right|=\sqrt{7056} \\
& \left| \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right) \right|=84.....................(x) \\
\end{align}$
Combining all the values and substituting in the formula we get,
The shortest distance $=\left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right|=\left| \dfrac{\left( 24\hat{i}+36\hat{j}+48\hat{k} \right).\left( 7\hat{i}+38\hat{j}-5\hat{k} \right)}{84} \right|$
In the numerator, we need to find the dot product of two vectors. The formula for finding the dot product is as follows,
\[\left( {\vec{a}} \right).\left( {\vec{b}} \right)=\left( {{a}_{x}}\times {{b}_{x}} \right)+\left( {{a}_{y}}\times {{b}_{y}} \right)+\left( {{a}_{z}}\times {{b}_{z}} \right)\] where, ${{a}_{x}},{{a}_{y}},{{a}_{z}}$ are the x, y, z components of $\vec{a}$ and ${{b}_{x}},{{b}_{y}},{{b}_{z}}$ are the x, y, z components of $\vec{b}$ .
Solving the equation further,
\[=\left| \dfrac{\left( 24\times 7 \right)+\left( 36\times 38 \right)+\left( 48\times -5 \right)}{84} \right|=\left| \dfrac{192+1368-240}{84} \right|=\dfrac{110}{7}\text{units}\] .
Therefore, the distance between the given lines is $\dfrac{110}{7}$units.
Note: It is easily confused while interpreting the components of the ${{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{b}}_{1}},{{\vec{b}}_{2}}$ . If the final answer is negative, we need to write only the magnitude of the answer obtained. Another common mistake which can be made is that there is a by default negative sign while finding the ${{j}^{th}}$ component of $\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)$ . This is one of the rules while finding the determinant which needs to be taken care of.
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{b}_{11}} & {{b}_{12}} & {{b}_{13}} \\
{{b}_{21}} & {{b}_{22}} & {{b}_{23}} \\
\end{matrix} \right|$ , where ${{b}_{11}},{{b}_{12}},{{b}_{13}}$ are the components of ${{\vec{b}}_{1}}$ and ${{b}_{21}},{{b}_{22}},{{b}_{23}}$ are the components of ${{\vec{b}}_{2}}$ respectively.
Substituting all the values we can get the shortest distance.
Complete step-by-step answer:
We can define skew lines as follows,
Skew lines are straight lines in a three-dimensional form which are not parallel and do not cross.
Let’s consider the first skew line to be ${{\vec{r}}_{1}}=\left( 8+3\lambda \right)\hat{i}-\left( 9+16\lambda \right)\hat{j}+\left( 10+7\lambda \right)\hat{k}....................(i)$
Let’s consider the second skew line to be \[{{\vec{r}}_{2}}=15\hat{i}+29\hat{j}+5\hat{k}+\mu \left( 3\hat{i}+8\hat{j}-5\hat{k} \right)....................(ii)\]
As we can see that both the equations are in different forms. Let us convert equation (i) in equation (ii) we get,
${{\vec{r}}_{1}}=8\hat{i}-9\hat{j}+10\hat{k}+\lambda \left( 3\hat{i}-16\hat{j}+7\hat{k} \right)....................(iii)$
Now, comparing equation (ii) and equation (iii) with ${{\vec{r}}_{1}}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}}$ and ${{\vec{r}}_{2}}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}}$ we get the values to be as follows,
$\begin{align}
& {{{\vec{a}}}_{1}}=8\hat{i}-9\hat{j}+10\hat{k}...................(iv) \\
& {{{\vec{b}}}_{1}}=3\hat{i}-16\hat{j}+7\hat{k}...................(v) \\
& {{{\vec{a}}}_{2}}=15\hat{i}+29\hat{j}+5\hat{k}...................(vi) \\
& {{{\vec{b}}}_{2}}=3\hat{i}+8\hat{j}-5\hat{k}...................(vii) \\
\end{align}$
The shortest distance between two skew line equations ${{\vec{r}}_{1}}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}}$ and ${{\vec{r}}_{2}}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}}$ is $\left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right|$
Let us first find the value of $\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)$. Substituting the values from equation (vi) and (iv) we get,
$\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=\left( 15\hat{i}+29\hat{j}+5\hat{k} \right)-\left( 8\hat{i}-9\hat{j}+10\hat{k} \right)$
Solving the equation, we get,
$\begin{align}
& \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=\left( 15-8 \right)\hat{i}+\left( 29-\left( -9 \right) \right)\hat{j}+\left( 5-10 \right)\hat{k} \\
& \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=7\hat{i}+38\hat{j}-5\hat{k}.....................(viii) \\
\end{align}$
Now, let's find the value of $\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)$ . Substituting the values from the equation (v) and (vii) we get,
$\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
3 & -16 & 7 \\
3 & 8 & -5 \\
\end{matrix} \right|$
Solving the above equation we get,
$\begin{align}
& \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)=\left[ \left( -16\times -5 \right)-\left( 7\times 8 \right) \right]\hat{i}-\left[ \left( 3\times -5 \right)-\left( 7\times 3 \right) \right]\hat{j}+\left[ \left( 3\times 8 \right)-\left( 3\times -16 \right) \right]\hat{k} \\
& \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)=\left[ 80-56 \right]\hat{i}-\left[ -15-21 \right]\hat{j}+\left[ 24+48 \right]\hat{k} \\
& \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)=24\hat{i}+36\hat{j}+72\hat{k}....................\left( ix \right) \\
\end{align}$
Now, let's find the value of $\left| \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right) \right|$.
The magnitude of the $\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)$ can be found as follows,
$\left| \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right) \right|=\sqrt{{{\left( \text{Coefficient of }\hat{i} \right)}^{2}}+{{\left( \text{Coefficient of }\hat{j} \right)}^{2}}+{{\left( \text{Coefficient of }\hat{k} \right)}^{2}}}$
Finding the magnitude of the vector we get,
$\left| \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right) \right|=\left| 24\hat{i}+36\hat{j}+72\hat{k} \right|$
Solving the above equation we get,
$\begin{align}
& \left| \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right) \right|=\sqrt{{{24}^{2}}+{{36}^{2}}+{{72}^{2}}} \\
& \left| \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right) \right|=\sqrt{7056} \\
& \left| \left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right) \right|=84.....................(x) \\
\end{align}$
Combining all the values and substituting in the formula we get,
The shortest distance $=\left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right|=\left| \dfrac{\left( 24\hat{i}+36\hat{j}+48\hat{k} \right).\left( 7\hat{i}+38\hat{j}-5\hat{k} \right)}{84} \right|$
In the numerator, we need to find the dot product of two vectors. The formula for finding the dot product is as follows,
\[\left( {\vec{a}} \right).\left( {\vec{b}} \right)=\left( {{a}_{x}}\times {{b}_{x}} \right)+\left( {{a}_{y}}\times {{b}_{y}} \right)+\left( {{a}_{z}}\times {{b}_{z}} \right)\] where, ${{a}_{x}},{{a}_{y}},{{a}_{z}}$ are the x, y, z components of $\vec{a}$ and ${{b}_{x}},{{b}_{y}},{{b}_{z}}$ are the x, y, z components of $\vec{b}$ .
Solving the equation further,
\[=\left| \dfrac{\left( 24\times 7 \right)+\left( 36\times 38 \right)+\left( 48\times -5 \right)}{84} \right|=\left| \dfrac{192+1368-240}{84} \right|=\dfrac{110}{7}\text{units}\] .
Therefore, the distance between the given lines is $\dfrac{110}{7}$units.
Note: It is easily confused while interpreting the components of the ${{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{b}}_{1}},{{\vec{b}}_{2}}$ . If the final answer is negative, we need to write only the magnitude of the answer obtained. Another common mistake which can be made is that there is a by default negative sign while finding the ${{j}^{th}}$ component of $\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right)$ . This is one of the rules while finding the determinant which needs to be taken care of.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
December 10th of 1948 is an important day in the history class 12 sst CBSE

Prove that a parallelogram circumscribing a circle-class-12-maths-CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

