Answer
Verified
459.9k+ views
Hint:As we know that the hour hand of the clock makes ${360^ \circ }$in 12 hours. So, in 1 hour, the hour hand moves ${30^ \circ }$. Now we divide this by 60 minutes and we get the degrees of hour hand made in 1 minute. Then we calculate the minutes at 4.24 pm. Now we multiply the degrees of hour hand made in 1 minute and minutes at 4.24 pm.
Complete step-by-step answer:
According to the question we have to find the degree of hour hand made at 4.24 pm
As we know that in 12 hours a clock made angle = ${360^ \circ }$
Now the angle made by the hour hand of the clock in 1 hour = $\dfrac{{{{360}^ \circ }}}{{12}}$
\[ = {30^ \circ }\]
So, the angle made by the hour hand of the clock in 1 minute= $\dfrac{{30}}{{60}}$
$ = {\dfrac{1}{2}^ \circ } = {0.5^ \circ }$
As we know that 1 hour = 60 minutes
Now we calculate the total number of minutes from 12.00 to 4.24 pm we get
$ = 4 \times 60 + 24$
$ = 240 + 24$
$ = 264$
Therefore the total number of minutes=264 minutes
Now we calculate the angle made by clock in 264 minutes we get
$ = 264 \times \dfrac{1}{2}$
$ = {132^ \circ }$
The angle made by the hour hand of the clock at 4.24 pm is ${132^ \circ }$
So, the correct answer is “Option C”.
Note:For solving these type of questions we have to always remember that the angle made by the hour hand is ${360^ \circ }$. Therefore we divide it by 12 hours, this gives us the angle made by the clock per hour i.e. \[{30^ \circ }\].Lastly calculate the total number minutes made by the hour hand for a given time.
Complete step-by-step answer:
According to the question we have to find the degree of hour hand made at 4.24 pm
As we know that in 12 hours a clock made angle = ${360^ \circ }$
Now the angle made by the hour hand of the clock in 1 hour = $\dfrac{{{{360}^ \circ }}}{{12}}$
\[ = {30^ \circ }\]
So, the angle made by the hour hand of the clock in 1 minute= $\dfrac{{30}}{{60}}$
$ = {\dfrac{1}{2}^ \circ } = {0.5^ \circ }$
As we know that 1 hour = 60 minutes
Now we calculate the total number of minutes from 12.00 to 4.24 pm we get
$ = 4 \times 60 + 24$
$ = 240 + 24$
$ = 264$
Therefore the total number of minutes=264 minutes
Now we calculate the angle made by clock in 264 minutes we get
$ = 264 \times \dfrac{1}{2}$
$ = {132^ \circ }$
The angle made by the hour hand of the clock at 4.24 pm is ${132^ \circ }$
So, the correct answer is “Option C”.
Note:For solving these type of questions we have to always remember that the angle made by the hour hand is ${360^ \circ }$. Therefore we divide it by 12 hours, this gives us the angle made by the clock per hour i.e. \[{30^ \circ }\].Lastly calculate the total number minutes made by the hour hand for a given time.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE