![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
What is the density of ${{N}_{2}}$ gas at $227{}^\circ C$and 5.00 atm pressure?$(R=0.082\text{ }L\text{ }atm\text{ }{{K}^{-1}}\text{ }mo{{l}^{-1}})$
(A)- 1.40 g/mL
(B)- 2.81 g/mL
(C)- 3.41 g/mL
(D)- 0.29 g/mL
Answer
455.4k+ views
Hint: Combining Boyle’s law, Charle’s law, Gay-Lussac’s law, and Avagadro’s law gives us the Combined Gas law which can combine into one proportion as-
$V\propto \dfrac{T}{P}$
Removing the proportionality and inserting a constant,
$\dfrac{PV}{T}=C$
This clearly says that as the pressure rises, the temperature also rises and vice versa.
Therefore, the ideal gas equation is given as-
$PV=nRT$
Where P = pressure of the gas;
V = volume of the gas;
n = number of moles;
T = absolute temperature; and
R = Ideal gas constant, also known as Boltzmann constant $=0.082057\text{ L atm K}{{\text{ }}^{-1}}\text{ mo}{{\text{l}}^{-1}}$
Complete answer:
-As we know that number of moles (n) $=\dfrac{\text{given mass (w)}}{\text{molar mass(M)}}$ , so substituting this value in the ideal gas equation we get,
$PV=\dfrac{w}{M}(RT)$
Rearranging the equation to get the value of PM,
$PM=\dfrac{w}{V}(RT)$
As we know, $Density(d)=\dfrac{mass(m)}{volume(V)}$
The equation can now be written as,
$\begin{align}
& PM=dRT \\
& d=\dfrac{PM}{RT} \\
\end{align}$
According to question,
P = 5 atm
T = 500K
M = 28 g/mol
-Inserting these values in the density formula, we get
$d=\dfrac{PM}{RT}=\dfrac{5\times 28}{0.0821\times 500}=3.41g/ml$
So, the correct answer is option D.
Note:
Nitrogen which is the principal component of the earth’s atmosphere 78.084% percent by volume is a colourless, odourless, tasteless and relatively inert gas. Nitrogen gas does not support combustion nor reacts with most of the substances. Nitrogen gas being stable has many industrial uses. Since it is chemically inactive with most of the elements, hence is used as a preservative to prevent oxidation. When chilled to its liquid state, is widely used as a refrigerant in medical, chemical and manufacturing industries. Nitrogen is also an important element in the synthesis of many organic compounds, as it serves as a limiting nutrient in many ecosystems.
$V\propto \dfrac{T}{P}$
Removing the proportionality and inserting a constant,
$\dfrac{PV}{T}=C$
This clearly says that as the pressure rises, the temperature also rises and vice versa.
Therefore, the ideal gas equation is given as-
$PV=nRT$
Where P = pressure of the gas;
V = volume of the gas;
n = number of moles;
T = absolute temperature; and
R = Ideal gas constant, also known as Boltzmann constant $=0.082057\text{ L atm K}{{\text{ }}^{-1}}\text{ mo}{{\text{l}}^{-1}}$
Complete answer:
-As we know that number of moles (n) $=\dfrac{\text{given mass (w)}}{\text{molar mass(M)}}$ , so substituting this value in the ideal gas equation we get,
$PV=\dfrac{w}{M}(RT)$
Rearranging the equation to get the value of PM,
$PM=\dfrac{w}{V}(RT)$
As we know, $Density(d)=\dfrac{mass(m)}{volume(V)}$
The equation can now be written as,
$\begin{align}
& PM=dRT \\
& d=\dfrac{PM}{RT} \\
\end{align}$
According to question,
P = 5 atm
T = 500K
M = 28 g/mol
-Inserting these values in the density formula, we get
$d=\dfrac{PM}{RT}=\dfrac{5\times 28}{0.0821\times 500}=3.41g/ml$
So, the correct answer is option D.
Note:
Nitrogen which is the principal component of the earth’s atmosphere 78.084% percent by volume is a colourless, odourless, tasteless and relatively inert gas. Nitrogen gas does not support combustion nor reacts with most of the substances. Nitrogen gas being stable has many industrial uses. Since it is chemically inactive with most of the elements, hence is used as a preservative to prevent oxidation. When chilled to its liquid state, is widely used as a refrigerant in medical, chemical and manufacturing industries. Nitrogen is also an important element in the synthesis of many organic compounds, as it serves as a limiting nutrient in many ecosystems.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The correct order of melting point of 14th group elements class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)