![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Derivation of the second equation of motion is:
\[\left( a \right)\] $d\theta = wd2t$
$\left( b \right)$ $d\theta = wdt$
$\left( c \right)$ $d\theta = wd3t$
$\left( d \right)$ $d\theta = wd{t^2}$
Answer
124.8k+ views
Hint We know that the product of the velocity and the time will be equal to the displacement of the body. If velocity is not constant that is we can say that velocity keeps on increasing or decreasing. By using the formula for the displacement $s = ut + \dfrac{1}{2}a{t^2}$we will be able to find the relation between them.
Formula used:
Displacement,
$s = ut + \dfrac{1}{2}a{t^2}$
Here,
$s$, will be the displacement
$u$, will be the initial velocity
$a$, will be the acceleration
$t$, will be the temperature
Complete Step By Step Solution So as know displacement will be equal to the
Displacement, $s = ut + \dfrac{1}{2}a{t^2}$
By using the above equation and converting the units as-
$s$ as$\theta $, $u$as ${w_0}$and $a$as $\alpha $
We get the equation as,
\[\theta = {w_0}t + \dfrac{1}{2}\alpha {t^2}\]
Now differentiating the above equation with respect to time,
We get
$ \Rightarrow \dfrac{{d\theta }}{{dt}} = w$
Now by taking the $dt$ right side of the equation,
We get
$ \therefore d\theta = wdt$
Therefore the option $B$ will be the correct option.
Additional information
The equations of motion are simple equations that describe the state of motion of a point object, provided the acceleration is constant throughout the motion. The capacities are characterized in Euclidean space in old-style mechanics, yet are supplanted by bent spaces in relativity.
There are two descriptions of motion: Kinematics and Dynamics. Kinematics deals with motion where the force is not taken into account. Dynamics considers force and energy.
Now, coming to Kinematics, the equations of motion are:
$ \bullet $ ${v^2} - {u^2} = 2as$
$ \bullet $ $s = ut + \dfrac{1}{2}a{t^2}$
$ \bullet $ $v = u + at$
Note Motion is a movement with velocity and acceleration. In material science, movement is an adjustment in the position of an article over the long haul. Movement is depicted regarding relocation, separation, speed, quickening, time, and speed.
Speed, being a scalar, is the rate at which an article covers separation concerning time. The normal speed is the separation as for time (a scalar amount) proportion. Speed is oblivious of bearing.
Formula used:
Displacement,
$s = ut + \dfrac{1}{2}a{t^2}$
Here,
$s$, will be the displacement
$u$, will be the initial velocity
$a$, will be the acceleration
$t$, will be the temperature
Complete Step By Step Solution So as know displacement will be equal to the
Displacement, $s = ut + \dfrac{1}{2}a{t^2}$
By using the above equation and converting the units as-
$s$ as$\theta $, $u$as ${w_0}$and $a$as $\alpha $
We get the equation as,
\[\theta = {w_0}t + \dfrac{1}{2}\alpha {t^2}\]
Now differentiating the above equation with respect to time,
We get
$ \Rightarrow \dfrac{{d\theta }}{{dt}} = w$
Now by taking the $dt$ right side of the equation,
We get
$ \therefore d\theta = wdt$
Therefore the option $B$ will be the correct option.
Additional information
The equations of motion are simple equations that describe the state of motion of a point object, provided the acceleration is constant throughout the motion. The capacities are characterized in Euclidean space in old-style mechanics, yet are supplanted by bent spaces in relativity.
There are two descriptions of motion: Kinematics and Dynamics. Kinematics deals with motion where the force is not taken into account. Dynamics considers force and energy.
Now, coming to Kinematics, the equations of motion are:
$ \bullet $ ${v^2} - {u^2} = 2as$
$ \bullet $ $s = ut + \dfrac{1}{2}a{t^2}$
$ \bullet $ $v = u + at$
Note Motion is a movement with velocity and acceleration. In material science, movement is an adjustment in the position of an article over the long haul. Movement is depicted regarding relocation, separation, speed, quickening, time, and speed.
Speed, being a scalar, is the rate at which an article covers separation concerning time. The normal speed is the separation as for time (a scalar amount) proportion. Speed is oblivious of bearing.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the difference between Conduction and conv class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Mark the correct statements about the friction between class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A standing wave is formed by the superposition of two class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Derive an expression for work done by the gas in an class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
![arrow-right](/cdn/images/seo-templates/arrow-right.png)