Answer
Verified
390k+ views
Hint: In this problem we need to find the derivative graph of a parabola. For this we will first assume the standard equation of the parabola which is given by $y=a{{x}^{2}}+bx+c$ where $a$, $b$, $c$ are the constants. Now we will differentiate the above equation with respect to the variable $x$. By using the differentiation formula, we will simplify the obtained equation to get the required result.
Complete step-by-step answer:
Let the equation of the parabola will be $y=a{{x}^{2}}+bx+c$.
Differentiating the above equation with respect to $x$, then we will get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( a{{x}^{2}}+bx+c \right)$
Applying the differentiation for each term individually, then we will have
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( a{{x}^{2}} \right)+\dfrac{d}{dx}\left( bx \right)+\dfrac{d}{dx}\left( c \right)$
Taking out the constants from differentiation which are in multiplication with the variables in the above equation, then we will get
$\dfrac{dy}{dx}=a\dfrac{d}{dx}\left( {{x}^{2}} \right)+b\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( c \right)$
From the differentiation formula $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$ we can write the value of $\dfrac{d}{dx}\left( {{x}^{2}} \right)$ as $2x$. Substituting this value in the above equation, then we will have
$\dfrac{dy}{dx}=a\left( 2x \right)+b\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( c \right)$
We have the value $\dfrac{d}{dx}\left( x \right)=1$. Substituting this value in the above equation, then we will get
$\dfrac{dy}{dx}=a\left( 2x \right)+b\left( 1 \right)+\dfrac{d}{dx}\left( c \right)$
The value $c$ which is in the above equation is a constant. We know that differentiation value of a constant is equals to zero. By using this value, we can write the above equation as
$\dfrac{dy}{dx}=a\left( 2x \right)+b\left( 1 \right)+0$
Simplifying the above equation by using the basic mathematical operations, then we will get
$\dfrac{dy}{dx}=2ax+b$
The equation $2ax+b$ represents the equation of the line. We can observe this in the below graph also
Hence the derivative graph of the parabola is Straight Line.
Note: In this problem we have assumed the equation of the parabola as $y=a{{x}^{2}}+bx+c$ instead of $x=a{{y}^{2}}+by+c$ even though the both the equations represent the parabola. Because the equation $y=a{{x}^{2}}+bx+c$ has an extra advantage to calculate the differentiation value easily over the equation $x=a{{y}^{2}}+by+c$.
Complete step-by-step answer:
Let the equation of the parabola will be $y=a{{x}^{2}}+bx+c$.
Differentiating the above equation with respect to $x$, then we will get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( a{{x}^{2}}+bx+c \right)$
Applying the differentiation for each term individually, then we will have
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( a{{x}^{2}} \right)+\dfrac{d}{dx}\left( bx \right)+\dfrac{d}{dx}\left( c \right)$
Taking out the constants from differentiation which are in multiplication with the variables in the above equation, then we will get
$\dfrac{dy}{dx}=a\dfrac{d}{dx}\left( {{x}^{2}} \right)+b\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( c \right)$
From the differentiation formula $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$ we can write the value of $\dfrac{d}{dx}\left( {{x}^{2}} \right)$ as $2x$. Substituting this value in the above equation, then we will have
$\dfrac{dy}{dx}=a\left( 2x \right)+b\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( c \right)$
We have the value $\dfrac{d}{dx}\left( x \right)=1$. Substituting this value in the above equation, then we will get
$\dfrac{dy}{dx}=a\left( 2x \right)+b\left( 1 \right)+\dfrac{d}{dx}\left( c \right)$
The value $c$ which is in the above equation is a constant. We know that differentiation value of a constant is equals to zero. By using this value, we can write the above equation as
$\dfrac{dy}{dx}=a\left( 2x \right)+b\left( 1 \right)+0$
Simplifying the above equation by using the basic mathematical operations, then we will get
$\dfrac{dy}{dx}=2ax+b$
The equation $2ax+b$ represents the equation of the line. We can observe this in the below graph also
Hence the derivative graph of the parabola is Straight Line.
Note: In this problem we have assumed the equation of the parabola as $y=a{{x}^{2}}+bx+c$ instead of $x=a{{y}^{2}}+by+c$ even though the both the equations represent the parabola. Because the equation $y=a{{x}^{2}}+bx+c$ has an extra advantage to calculate the differentiation value easily over the equation $x=a{{y}^{2}}+by+c$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is BLO What is the full form of BLO class 8 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE