Answer
Verified
405.9k+ views
Hint: The first term in our expression is easily differentiable. Then, our problem is basically to find the derivative of $\left[ \arctan \left( \dfrac{1}{x} \right) \right]$. For the second term, we will use the chain rule to find the derivative of $\left[ \arctan \left( \dfrac{1}{x} \right) \right]$ with respect to $\left( \dfrac{1}{x} \right)$ and then multiply it with the derivative of $\left( \dfrac{1}{x} \right)$ with respect to $(x)$. This will give us the required solution.
Complete step by step answer:
We know that ‘arctan’ is a term used for writing the inverse trigonometric relation. So, we can write our expression as: $\left[ ta{{n}^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]$.
Now, let us first assign some terms that we are going to use later in our problem.
Let the given term on which we need to operate a differential be given by ‘y’ . Here, ‘y’ is given to us as:
$\Rightarrow y=\left[ ta{{n}^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]$
Then, we need to find the differential of ‘y’ with respect to ‘x’. This can be done as follows:
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d\left[ ta{{n}^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]}{dx}$
Applying the chain rule of differentiation on the second term, our expression can be written as:
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d\left[ {{\tan }^{-1}}x \right]}{dx}+\dfrac{d\left[ {{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]}{d\left( \dfrac{1}{x} \right)}\times \dfrac{d\left( \dfrac{1}{x} \right)}{dx}$
Using the formula for differential of inverse tangent that is equal to:
$\Rightarrow \dfrac{d\left( {{\tan }^{-1}}\theta \right)}{d\theta }=\dfrac{1}{1+{{\theta }^{2}}}$
We get:
$\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}+\dfrac{1}{1+{{\left( \dfrac{1}{x} \right)}^{2}}}\times -\dfrac{1}{{{x}^{2}}}$ $\left[ \because \dfrac{d\left( \dfrac{1}{x} \right)}{dx}=-\dfrac{1}{{{x}^{2}}} \right]$
On further simplification, our expression becomes:
$\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}+\dfrac{{{x}^{2}}}{1+{{x}^{2}}}\times \left( -\dfrac{1}{{{x}^{2}}} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}-\dfrac{1}{1+{{x}^{2}}} \\
& \therefore \dfrac{dy}{dx}=0 \\
\end{align}$
Hence, the derivative of $\left[ \arctan \left( x \right)+\arctan \left( \dfrac{1}{x} \right) \right]$ comes out to be Zero.
Note: It is very important to know the meaning of terms like ‘arctan’ or ‘arcsine’ or ‘arccosine’, etc. as these are some very common terms. Also, one should know the differential result of these trigonometric quantities as they are some very important results. Although they can be very easily derived, it is recommended to remember them thoroughly as it will save time spent in extra calculation.
Complete step by step answer:
We know that ‘arctan’ is a term used for writing the inverse trigonometric relation. So, we can write our expression as: $\left[ ta{{n}^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]$.
Now, let us first assign some terms that we are going to use later in our problem.
Let the given term on which we need to operate a differential be given by ‘y’ . Here, ‘y’ is given to us as:
$\Rightarrow y=\left[ ta{{n}^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]$
Then, we need to find the differential of ‘y’ with respect to ‘x’. This can be done as follows:
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d\left[ ta{{n}^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]}{dx}$
Applying the chain rule of differentiation on the second term, our expression can be written as:
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d\left[ {{\tan }^{-1}}x \right]}{dx}+\dfrac{d\left[ {{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]}{d\left( \dfrac{1}{x} \right)}\times \dfrac{d\left( \dfrac{1}{x} \right)}{dx}$
Using the formula for differential of inverse tangent that is equal to:
$\Rightarrow \dfrac{d\left( {{\tan }^{-1}}\theta \right)}{d\theta }=\dfrac{1}{1+{{\theta }^{2}}}$
We get:
$\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}+\dfrac{1}{1+{{\left( \dfrac{1}{x} \right)}^{2}}}\times -\dfrac{1}{{{x}^{2}}}$ $\left[ \because \dfrac{d\left( \dfrac{1}{x} \right)}{dx}=-\dfrac{1}{{{x}^{2}}} \right]$
On further simplification, our expression becomes:
$\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}+\dfrac{{{x}^{2}}}{1+{{x}^{2}}}\times \left( -\dfrac{1}{{{x}^{2}}} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}-\dfrac{1}{1+{{x}^{2}}} \\
& \therefore \dfrac{dy}{dx}=0 \\
\end{align}$
Hence, the derivative of $\left[ \arctan \left( x \right)+\arctan \left( \dfrac{1}{x} \right) \right]$ comes out to be Zero.
Note: It is very important to know the meaning of terms like ‘arctan’ or ‘arcsine’ or ‘arccosine’, etc. as these are some very common terms. Also, one should know the differential result of these trigonometric quantities as they are some very important results. Although they can be very easily derived, it is recommended to remember them thoroughly as it will save time spent in extra calculation.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE