Answer
Verified
396.6k+ views
Hint: The first term in our expression is easily differentiable. Then, our problem is basically to find the derivative of $\left[ \arctan \left( \dfrac{1}{x} \right) \right]$. For the second term, we will use the chain rule to find the derivative of $\left[ \arctan \left( \dfrac{1}{x} \right) \right]$ with respect to $\left( \dfrac{1}{x} \right)$ and then multiply it with the derivative of $\left( \dfrac{1}{x} \right)$ with respect to $(x)$. This will give us the required solution.
Complete step by step answer:
We know that ‘arctan’ is a term used for writing the inverse trigonometric relation. So, we can write our expression as: $\left[ ta{{n}^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]$.
Now, let us first assign some terms that we are going to use later in our problem.
Let the given term on which we need to operate a differential be given by ‘y’ . Here, ‘y’ is given to us as:
$\Rightarrow y=\left[ ta{{n}^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]$
Then, we need to find the differential of ‘y’ with respect to ‘x’. This can be done as follows:
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d\left[ ta{{n}^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]}{dx}$
Applying the chain rule of differentiation on the second term, our expression can be written as:
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d\left[ {{\tan }^{-1}}x \right]}{dx}+\dfrac{d\left[ {{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]}{d\left( \dfrac{1}{x} \right)}\times \dfrac{d\left( \dfrac{1}{x} \right)}{dx}$
Using the formula for differential of inverse tangent that is equal to:
$\Rightarrow \dfrac{d\left( {{\tan }^{-1}}\theta \right)}{d\theta }=\dfrac{1}{1+{{\theta }^{2}}}$
We get:
$\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}+\dfrac{1}{1+{{\left( \dfrac{1}{x} \right)}^{2}}}\times -\dfrac{1}{{{x}^{2}}}$ $\left[ \because \dfrac{d\left( \dfrac{1}{x} \right)}{dx}=-\dfrac{1}{{{x}^{2}}} \right]$
On further simplification, our expression becomes:
$\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}+\dfrac{{{x}^{2}}}{1+{{x}^{2}}}\times \left( -\dfrac{1}{{{x}^{2}}} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}-\dfrac{1}{1+{{x}^{2}}} \\
& \therefore \dfrac{dy}{dx}=0 \\
\end{align}$
Hence, the derivative of $\left[ \arctan \left( x \right)+\arctan \left( \dfrac{1}{x} \right) \right]$ comes out to be Zero.
Note: It is very important to know the meaning of terms like ‘arctan’ or ‘arcsine’ or ‘arccosine’, etc. as these are some very common terms. Also, one should know the differential result of these trigonometric quantities as they are some very important results. Although they can be very easily derived, it is recommended to remember them thoroughly as it will save time spent in extra calculation.
Complete step by step answer:
We know that ‘arctan’ is a term used for writing the inverse trigonometric relation. So, we can write our expression as: $\left[ ta{{n}^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]$.
Now, let us first assign some terms that we are going to use later in our problem.
Let the given term on which we need to operate a differential be given by ‘y’ . Here, ‘y’ is given to us as:
$\Rightarrow y=\left[ ta{{n}^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]$
Then, we need to find the differential of ‘y’ with respect to ‘x’. This can be done as follows:
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d\left[ ta{{n}^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]}{dx}$
Applying the chain rule of differentiation on the second term, our expression can be written as:
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d\left[ {{\tan }^{-1}}x \right]}{dx}+\dfrac{d\left[ {{\tan }^{-1}}\left( \dfrac{1}{x} \right) \right]}{d\left( \dfrac{1}{x} \right)}\times \dfrac{d\left( \dfrac{1}{x} \right)}{dx}$
Using the formula for differential of inverse tangent that is equal to:
$\Rightarrow \dfrac{d\left( {{\tan }^{-1}}\theta \right)}{d\theta }=\dfrac{1}{1+{{\theta }^{2}}}$
We get:
$\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}+\dfrac{1}{1+{{\left( \dfrac{1}{x} \right)}^{2}}}\times -\dfrac{1}{{{x}^{2}}}$ $\left[ \because \dfrac{d\left( \dfrac{1}{x} \right)}{dx}=-\dfrac{1}{{{x}^{2}}} \right]$
On further simplification, our expression becomes:
$\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}+\dfrac{{{x}^{2}}}{1+{{x}^{2}}}\times \left( -\dfrac{1}{{{x}^{2}}} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}-\dfrac{1}{1+{{x}^{2}}} \\
& \therefore \dfrac{dy}{dx}=0 \\
\end{align}$
Hence, the derivative of $\left[ \arctan \left( x \right)+\arctan \left( \dfrac{1}{x} \right) \right]$ comes out to be Zero.
Note: It is very important to know the meaning of terms like ‘arctan’ or ‘arcsine’ or ‘arccosine’, etc. as these are some very common terms. Also, one should know the differential result of these trigonometric quantities as they are some very important results. Although they can be very easily derived, it is recommended to remember them thoroughly as it will save time spent in extra calculation.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE