Answer
Verified
401.7k+ views
Hint: Use values of potential difference and current of an AC circuit and find average work first then find power from it.
Compete step by step solution:
Average power in an AC circuit:
Let V be the alternating potential difference in the AC circuit given as: -
${\text{V = }}{{\text{V}}_{\text{o}}}{\text{sin}}\omega {\text{t}}$ ….. (i)
Then the AC current developed will lag by a phase angle $\phi $ then,
${\text{I = }}{{\text{I}}_{\text{o}}}{\text{sin}}\left( {\omega {\text{t - }}\phi } \right)$ ….. (ii)
Now by using equations (i) and (ii) we will find the total work done over a complete cycle of AC
${\text{W = }}\int\limits_{\text{0}}^{\text{T}} {{\text{VI}} \cdot dt} $ …. (iii)
Put value of V and I from equations (i) and (ii) in the equation (iii)
$\therefore {\text{W = }}\int\limits_{\text{0}}^{\text{T}} {{{\text{V}}_{\text{o}}}} {\text{sin}}\omega t \cdot {{\text{I}}_{\text{o}}}{\text{sin}}\left( {\omega t{\text{ - }}\phi } \right) \cdot dt$
${\text{ = }}{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}\int\limits_{\text{0}}^{\text{T}} {{\text{sin}}\omega t{\text{sin}}\left( {\omega t{\text{ - }}\phi } \right)} \cdot dt$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\int\limits_0^T {2\sin \omega t\sin \left( {\omega t - \phi } \right)} \cdot dt$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\int\limits_0^T {\cos \left( {\omega t - \omega t + \phi } \right)} - \cos \left( {\omega t + \omega t - \phi } \right) \cdot dt$ $\left[ {\because 2\sin {\text{A}}\sin {\text{B = }}\cos \left( {{\text{A - B}}} \right) - \cos \left( {{\text{A + B}}} \right)} \right]$
Thus,
${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\left[ {t\cos \phi - \sin \dfrac{{\left( {2\omega t - \phi } \right)}}{{2\omega }}} \right]_0^T$
${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\left[ {{\text{T}}\cos \phi } \right]$
So, ${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}} \cdot \cos \phi \cdot {\text{T}}$
$\therefore $ Average power in AC circuit over a complete cycle is given by: -
${\text{P = }}\dfrac{{\text{W}}}{{\text{T}}}$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\cos \phi $
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}}}{{\sqrt {\text{2}} }}\dfrac{{{{\text{I}}_{\text{o}}}}}{{\sqrt {\text{2}} }}\cos \phi $
$\therefore {\text{P = }}{{\text{V}}_{{\text{rms}}}}{{\text{I}}_{{\text{rms}}}}\cos \phi $
Note: Start a solution with the basic way to find the average work done by using its simple formula and be careful while using the properties and average value of trigonometric functions. At the end just convert work done into power.
Compete step by step solution:
Average power in an AC circuit:
Let V be the alternating potential difference in the AC circuit given as: -
${\text{V = }}{{\text{V}}_{\text{o}}}{\text{sin}}\omega {\text{t}}$ ….. (i)
Then the AC current developed will lag by a phase angle $\phi $ then,
${\text{I = }}{{\text{I}}_{\text{o}}}{\text{sin}}\left( {\omega {\text{t - }}\phi } \right)$ ….. (ii)
Now by using equations (i) and (ii) we will find the total work done over a complete cycle of AC
${\text{W = }}\int\limits_{\text{0}}^{\text{T}} {{\text{VI}} \cdot dt} $ …. (iii)
Put value of V and I from equations (i) and (ii) in the equation (iii)
$\therefore {\text{W = }}\int\limits_{\text{0}}^{\text{T}} {{{\text{V}}_{\text{o}}}} {\text{sin}}\omega t \cdot {{\text{I}}_{\text{o}}}{\text{sin}}\left( {\omega t{\text{ - }}\phi } \right) \cdot dt$
${\text{ = }}{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}\int\limits_{\text{0}}^{\text{T}} {{\text{sin}}\omega t{\text{sin}}\left( {\omega t{\text{ - }}\phi } \right)} \cdot dt$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\int\limits_0^T {2\sin \omega t\sin \left( {\omega t - \phi } \right)} \cdot dt$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\int\limits_0^T {\cos \left( {\omega t - \omega t + \phi } \right)} - \cos \left( {\omega t + \omega t - \phi } \right) \cdot dt$ $\left[ {\because 2\sin {\text{A}}\sin {\text{B = }}\cos \left( {{\text{A - B}}} \right) - \cos \left( {{\text{A + B}}} \right)} \right]$
Thus,
${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\left[ {t\cos \phi - \sin \dfrac{{\left( {2\omega t - \phi } \right)}}{{2\omega }}} \right]_0^T$
${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\left[ {{\text{T}}\cos \phi } \right]$
So, ${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}} \cdot \cos \phi \cdot {\text{T}}$
$\therefore $ Average power in AC circuit over a complete cycle is given by: -
${\text{P = }}\dfrac{{\text{W}}}{{\text{T}}}$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\cos \phi $
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}}}{{\sqrt {\text{2}} }}\dfrac{{{{\text{I}}_{\text{o}}}}}{{\sqrt {\text{2}} }}\cos \phi $
$\therefore {\text{P = }}{{\text{V}}_{{\text{rms}}}}{{\text{I}}_{{\text{rms}}}}\cos \phi $
Note: Start a solution with the basic way to find the average work done by using its simple formula and be careful while using the properties and average value of trigonometric functions. At the end just convert work done into power.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE