Answer
Verified
467.7k+ views
Hint: Firstly we need to draw a diagram to understand the situation clearly. We will use the equation to find the refractive index of a prism and substitute the given situation of angle of minimum deviation in the expression and hence obtain an equation for the refractive index. Then we will apply the limit from \[0{}^\circ \] to \[90{}^\circ \] and obtain the range of refractive index which we could have using the given angle of minimum deviation.
Formula used:
\[\mu =\dfrac{\sin \dfrac{\left( A+{{\delta }_{m}} \right)}{2}}{\sin \dfrac{A}{2}}\]
Complete step by step answer:
We will draw the diagram using the parameters, angle of prism as (\[A\]), angle of incidence (\[i\]), angle of refraction (\[r\]) and angle of minimum deviation (\[{{\delta }_{m}}\]).
It is given that angle of minimum deviation to be equal to the refracting angle.
\[\Rightarrow {{\delta }_{m}}=A\]
Now, we will substitute this in the equation to find the refractive index of prism and it will become,
\[\mu =\dfrac{\sin \dfrac{\left( A+A \right)}{2}}{\sin \dfrac{A}{2}}=\dfrac{\sin \left( A \right)}{\sin \dfrac{A}{2}}\]
Now, we will use the trigonometric relation \[\sin \left( x \right)=2\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)\].
\[\Rightarrow \mu =\dfrac{\sin \left( A \right)}{\sin \dfrac{A}{2}}=\dfrac{2\sin \left( \dfrac{A}{2} \right)\cos \left( \dfrac{A}{2} \right)}{\sin \left( \dfrac{A}{2} \right)}\]
\[\mu =2\cos \left( \dfrac{A}{2} \right)\]
So, we have the expression for a refractive index.
Now we will apply the limit for angle of prism from \[0{}^\circ \] to \[90{}^\circ \]. Then, if \[A\] is \[0{}^\circ \],
\[\mu =2\cos \left( \dfrac{0}{2} \right)=2\]
And if \[A\] is \[90{}^\circ \], \[\mu =2\cos \left( \dfrac{90}{2} \right)= 2\cos \left( 45 \right)=\sqrt{2}\]
So, we can conclude that the prism could have a refractive index which lies between \[2\] and \[\sqrt{2}\].
So, the correct answer is “Option B”.
Note:
The soul of this question is situated at the part where we are applying the limit for \[A\].
There we are taking the angles \[0{}^\circ \] to \[90{}^\circ \] because they are the maximum and minimum angles which a prism could have. We are taking \[{{\delta }_{m}}=A\] because if the minimum deviation is equal to refracting angle, by geometry, the angle of prism and the refracting angles will be equal.
Formula used:
\[\mu =\dfrac{\sin \dfrac{\left( A+{{\delta }_{m}} \right)}{2}}{\sin \dfrac{A}{2}}\]
Complete step by step answer:
We will draw the diagram using the parameters, angle of prism as (\[A\]), angle of incidence (\[i\]), angle of refraction (\[r\]) and angle of minimum deviation (\[{{\delta }_{m}}\]).
It is given that angle of minimum deviation to be equal to the refracting angle.
\[\Rightarrow {{\delta }_{m}}=A\]
Now, we will substitute this in the equation to find the refractive index of prism and it will become,
\[\mu =\dfrac{\sin \dfrac{\left( A+A \right)}{2}}{\sin \dfrac{A}{2}}=\dfrac{\sin \left( A \right)}{\sin \dfrac{A}{2}}\]
Now, we will use the trigonometric relation \[\sin \left( x \right)=2\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)\].
\[\Rightarrow \mu =\dfrac{\sin \left( A \right)}{\sin \dfrac{A}{2}}=\dfrac{2\sin \left( \dfrac{A}{2} \right)\cos \left( \dfrac{A}{2} \right)}{\sin \left( \dfrac{A}{2} \right)}\]
\[\mu =2\cos \left( \dfrac{A}{2} \right)\]
So, we have the expression for a refractive index.
Now we will apply the limit for angle of prism from \[0{}^\circ \] to \[90{}^\circ \]. Then, if \[A\] is \[0{}^\circ \],
\[\mu =2\cos \left( \dfrac{0}{2} \right)=2\]
And if \[A\] is \[90{}^\circ \], \[\mu =2\cos \left( \dfrac{90}{2} \right)= 2\cos \left( 45 \right)=\sqrt{2}\]
So, we can conclude that the prism could have a refractive index which lies between \[2\] and \[\sqrt{2}\].
So, the correct answer is “Option B”.
Note:
The soul of this question is situated at the part where we are applying the limit for \[A\].
There we are taking the angles \[0{}^\circ \] to \[90{}^\circ \] because they are the maximum and minimum angles which a prism could have. We are taking \[{{\delta }_{m}}=A\] because if the minimum deviation is equal to refracting angle, by geometry, the angle of prism and the refracting angles will be equal.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE