Answer
Verified
432.6k+ views
Hint: Biot Savart’s law gives us the relationship between magnetic field, current in the element, length of the element, angle between the line joining element to the point and element and distance between point and element. Using Biot-Savart’s law, we can calculate the expression for magnetic fields for different objects.
Complete step-by-step solution:
According to the Biot Savart’s law, the magnetic field due to a current carrying element is directly proportional to the number of turns in the element, the current flowing through it and inversely proportional to the distance between the point at which the magnetic field is to be measured and the element.
$B\propto \dfrac{IdL\sin \theta }{{{r}^{2}}}$
Here,
$N$ is the number of turns
$I$ is the current in the element
$dL$ is the length of the element
$r$ is the distance between point and element
$\theta $ is the angle between element $dL$ and the line joining it to the point
On removing the sign of proportionality we get,
$B=\dfrac{{{\mu }_{0}}IdL\sin \theta }{4\pi {{r}^{2}}}$
$\dfrac{{{\mu }_{0}}}{4\pi }$ is the constant of proportionality , here ${{\mu }_{0}}$ is the permittivity of free space.
For magnetic field on the axis of a circular loop
Let the magnetic field due to element $dl$ be , therefore,
$dB=\dfrac{{{\mu }_{0}}Idl\sin (\phi )}{4\pi }$
Integrating to find for the loop, we get,
$\begin{align}
& \int\limits_{0}^{B}{dB}=\dfrac{{{\mu }_{0}}I\sin (\phi )}{4\pi {{R}^{2}}}\int\limits_{0}^{2\pi R}{dl} \\
& \Rightarrow B=\dfrac{{{\mu }_{0}}I\sin \phi }{4\pi {{r}^{2}}}\left[ l \right]_{0}^{2\pi R} \\
& \Rightarrow B=\dfrac{{{\mu }_{0}}I\sin \phi }{4\pi {{r}^{2}}}2\pi R \\
& \therefore B=\dfrac{{{\mu }_{0}}I\sin \phi R}{2{{r}^{2}}} \\
\end{align}$
When we substitute, $\sin \phi =\dfrac{R}{r}$ in the above equation, we get,
$\Rightarrow B=\dfrac{{{\mu }_{0}}IxR}{2{{r}^{3}}}$
From the triangle $r=\sqrt{{{x}^{2}}+{{R}^{2}}}$, we substitute $r$ to get,
$\therefore B=\dfrac{{{\mu }_{0}}I{{R}^{2}}}{2{{({{x}^{2}}+{{R}^{2}})}^{\dfrac{3}{2}}}}$
Therefore, the magnetic field on the axis of a circular loop is $\dfrac{{{\mu }_{0}}I{{R}^{2}}}{2{{({{x}^{2}}+{{R}^{2}})}^{\dfrac{3}{2}}}}$.
Note:
When the value of $x$ becomes zero, we get the expression for the magnetic field at the centre of the loop. Here, we can form a small element on the wire and integrate it for the whole loop. We calculate the direction of the magnetic field at a point on the axis using the right hand thumb rule. It states that if the thumb points in the direction of flow of current, then the fingers show the direction of the magnetic field.
Complete step-by-step solution:
According to the Biot Savart’s law, the magnetic field due to a current carrying element is directly proportional to the number of turns in the element, the current flowing through it and inversely proportional to the distance between the point at which the magnetic field is to be measured and the element.
$B\propto \dfrac{IdL\sin \theta }{{{r}^{2}}}$
Here,
$N$ is the number of turns
$I$ is the current in the element
$dL$ is the length of the element
$r$ is the distance between point and element
$\theta $ is the angle between element $dL$ and the line joining it to the point
On removing the sign of proportionality we get,
$B=\dfrac{{{\mu }_{0}}IdL\sin \theta }{4\pi {{r}^{2}}}$
$\dfrac{{{\mu }_{0}}}{4\pi }$ is the constant of proportionality , here ${{\mu }_{0}}$ is the permittivity of free space.
For magnetic field on the axis of a circular loop
Let the magnetic field due to element $dl$ be , therefore,
$dB=\dfrac{{{\mu }_{0}}Idl\sin (\phi )}{4\pi }$
Integrating to find for the loop, we get,
$\begin{align}
& \int\limits_{0}^{B}{dB}=\dfrac{{{\mu }_{0}}I\sin (\phi )}{4\pi {{R}^{2}}}\int\limits_{0}^{2\pi R}{dl} \\
& \Rightarrow B=\dfrac{{{\mu }_{0}}I\sin \phi }{4\pi {{r}^{2}}}\left[ l \right]_{0}^{2\pi R} \\
& \Rightarrow B=\dfrac{{{\mu }_{0}}I\sin \phi }{4\pi {{r}^{2}}}2\pi R \\
& \therefore B=\dfrac{{{\mu }_{0}}I\sin \phi R}{2{{r}^{2}}} \\
\end{align}$
When we substitute, $\sin \phi =\dfrac{R}{r}$ in the above equation, we get,
$\Rightarrow B=\dfrac{{{\mu }_{0}}IxR}{2{{r}^{3}}}$
From the triangle $r=\sqrt{{{x}^{2}}+{{R}^{2}}}$, we substitute $r$ to get,
$\therefore B=\dfrac{{{\mu }_{0}}I{{R}^{2}}}{2{{({{x}^{2}}+{{R}^{2}})}^{\dfrac{3}{2}}}}$
Therefore, the magnetic field on the axis of a circular loop is $\dfrac{{{\mu }_{0}}I{{R}^{2}}}{2{{({{x}^{2}}+{{R}^{2}})}^{\dfrac{3}{2}}}}$.
Note:
When the value of $x$ becomes zero, we get the expression for the magnetic field at the centre of the loop. Here, we can form a small element on the wire and integrate it for the whole loop. We calculate the direction of the magnetic field at a point on the axis using the right hand thumb rule. It states that if the thumb points in the direction of flow of current, then the fingers show the direction of the magnetic field.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE