Answer
Verified
443.1k+ views
Hint: Biot Savart’s law gives us the relationship between magnetic field, current in the element, length of the element, angle between the line joining element to the point and element and distance between point and element. Using Biot-Savart’s law, we can calculate the expression for magnetic fields for different objects.
Complete step-by-step solution:
According to the Biot Savart’s law, the magnetic field due to a current carrying element is directly proportional to the number of turns in the element, the current flowing through it and inversely proportional to the distance between the point at which the magnetic field is to be measured and the element.
$B\propto \dfrac{IdL\sin \theta }{{{r}^{2}}}$
Here,
$N$ is the number of turns
$I$ is the current in the element
$dL$ is the length of the element
$r$ is the distance between point and element
$\theta $ is the angle between element $dL$ and the line joining it to the point
On removing the sign of proportionality we get,
$B=\dfrac{{{\mu }_{0}}IdL\sin \theta }{4\pi {{r}^{2}}}$
$\dfrac{{{\mu }_{0}}}{4\pi }$ is the constant of proportionality , here ${{\mu }_{0}}$ is the permittivity of free space.
For magnetic field on the axis of a circular loop
Let the magnetic field due to element $dl$ be , therefore,
$dB=\dfrac{{{\mu }_{0}}Idl\sin (\phi )}{4\pi }$
Integrating to find for the loop, we get,
$\begin{align}
& \int\limits_{0}^{B}{dB}=\dfrac{{{\mu }_{0}}I\sin (\phi )}{4\pi {{R}^{2}}}\int\limits_{0}^{2\pi R}{dl} \\
& \Rightarrow B=\dfrac{{{\mu }_{0}}I\sin \phi }{4\pi {{r}^{2}}}\left[ l \right]_{0}^{2\pi R} \\
& \Rightarrow B=\dfrac{{{\mu }_{0}}I\sin \phi }{4\pi {{r}^{2}}}2\pi R \\
& \therefore B=\dfrac{{{\mu }_{0}}I\sin \phi R}{2{{r}^{2}}} \\
\end{align}$
When we substitute, $\sin \phi =\dfrac{R}{r}$ in the above equation, we get,
$\Rightarrow B=\dfrac{{{\mu }_{0}}IxR}{2{{r}^{3}}}$
From the triangle $r=\sqrt{{{x}^{2}}+{{R}^{2}}}$, we substitute $r$ to get,
$\therefore B=\dfrac{{{\mu }_{0}}I{{R}^{2}}}{2{{({{x}^{2}}+{{R}^{2}})}^{\dfrac{3}{2}}}}$
Therefore, the magnetic field on the axis of a circular loop is $\dfrac{{{\mu }_{0}}I{{R}^{2}}}{2{{({{x}^{2}}+{{R}^{2}})}^{\dfrac{3}{2}}}}$.
Note:
When the value of $x$ becomes zero, we get the expression for the magnetic field at the centre of the loop. Here, we can form a small element on the wire and integrate it for the whole loop. We calculate the direction of the magnetic field at a point on the axis using the right hand thumb rule. It states that if the thumb points in the direction of flow of current, then the fingers show the direction of the magnetic field.
Complete step-by-step solution:
According to the Biot Savart’s law, the magnetic field due to a current carrying element is directly proportional to the number of turns in the element, the current flowing through it and inversely proportional to the distance between the point at which the magnetic field is to be measured and the element.
$B\propto \dfrac{IdL\sin \theta }{{{r}^{2}}}$
Here,
$N$ is the number of turns
$I$ is the current in the element
$dL$ is the length of the element
$r$ is the distance between point and element
$\theta $ is the angle between element $dL$ and the line joining it to the point
On removing the sign of proportionality we get,
$B=\dfrac{{{\mu }_{0}}IdL\sin \theta }{4\pi {{r}^{2}}}$
$\dfrac{{{\mu }_{0}}}{4\pi }$ is the constant of proportionality , here ${{\mu }_{0}}$ is the permittivity of free space.
For magnetic field on the axis of a circular loop
Let the magnetic field due to element $dl$ be , therefore,
$dB=\dfrac{{{\mu }_{0}}Idl\sin (\phi )}{4\pi }$
Integrating to find for the loop, we get,
$\begin{align}
& \int\limits_{0}^{B}{dB}=\dfrac{{{\mu }_{0}}I\sin (\phi )}{4\pi {{R}^{2}}}\int\limits_{0}^{2\pi R}{dl} \\
& \Rightarrow B=\dfrac{{{\mu }_{0}}I\sin \phi }{4\pi {{r}^{2}}}\left[ l \right]_{0}^{2\pi R} \\
& \Rightarrow B=\dfrac{{{\mu }_{0}}I\sin \phi }{4\pi {{r}^{2}}}2\pi R \\
& \therefore B=\dfrac{{{\mu }_{0}}I\sin \phi R}{2{{r}^{2}}} \\
\end{align}$
When we substitute, $\sin \phi =\dfrac{R}{r}$ in the above equation, we get,
$\Rightarrow B=\dfrac{{{\mu }_{0}}IxR}{2{{r}^{3}}}$
From the triangle $r=\sqrt{{{x}^{2}}+{{R}^{2}}}$, we substitute $r$ to get,
$\therefore B=\dfrac{{{\mu }_{0}}I{{R}^{2}}}{2{{({{x}^{2}}+{{R}^{2}})}^{\dfrac{3}{2}}}}$
Therefore, the magnetic field on the axis of a circular loop is $\dfrac{{{\mu }_{0}}I{{R}^{2}}}{2{{({{x}^{2}}+{{R}^{2}})}^{\dfrac{3}{2}}}}$.
Note:
When the value of $x$ becomes zero, we get the expression for the magnetic field at the centre of the loop. Here, we can form a small element on the wire and integrate it for the whole loop. We calculate the direction of the magnetic field at a point on the axis using the right hand thumb rule. It states that if the thumb points in the direction of flow of current, then the fingers show the direction of the magnetic field.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE