Answer
Verified
382k+ views
Hint: A wire carrying current has a magnetic field. The intensity of the magnetic field at any point is obtained by the Biot-Savart’s law.
This law in vector form can be written as
\[d\vec B = \dfrac{{{\mu _0}}}{{4\pi }}i\dfrac{{d\vec l \times \hat r}}{{{r^2}}}\]
Step by step solution:
1) Consider a current carrying circular loop having its center at O carrying current i. If dl is a small element at a distance r then, the magnetic field intensity on that point can be written using Biot-Savart’s law.
\[
d\vec B = \dfrac{{{\mu _0}}}{{4\pi }}i\dfrac{{d\vec l \times \hat r}}{{{r^2}}} \\
\left| {d\vec B} \right| = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{idl\sin \theta }}{{{r^2}}} \\
\]
2) As the loop is circular then,
\[\theta = {90^ \circ }\]
\[\sin \theta = 1\]
3) Putting this in the Biot-Savart’s law we will get,
\[\left| {d\vec B} \right| = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{idl}}{{{r^2}}}\]
4) If we think that the circular loop is composed of numbers of such small element dl, then we will get the magnetic intensity for all over the loop. So to get the total field we must sum up that is integrate the magnetic field all over the field.
\[
B = \int\limits_0^B {d\vec B} \\
B = \int {\dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{idl}}{{{r^2}}}} \\
B = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{i}{{{r^2}}}\int {dl} \\
\]
5) As the integration over dl returns the circumference of the loop then, you can write,
\[
\int {dl} = 2\pi r \\
B = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{i}{{{r^2}}}2\pi r \\
B = \dfrac{{{\mu _0}i}}{{2r}} \\
\]
Hence the magnetic field at the center of the circular coil is \[B = \dfrac{{{\mu _0}i}}{{2r}}\].
Note: Field due to a semi-circular coil is just half that of the circular coil.
\[B = \dfrac{{{\mu _0}i}}{{4r}}\]
This law in vector form can be written as
\[d\vec B = \dfrac{{{\mu _0}}}{{4\pi }}i\dfrac{{d\vec l \times \hat r}}{{{r^2}}}\]
Step by step solution:
1) Consider a current carrying circular loop having its center at O carrying current i. If dl is a small element at a distance r then, the magnetic field intensity on that point can be written using Biot-Savart’s law.
\[
d\vec B = \dfrac{{{\mu _0}}}{{4\pi }}i\dfrac{{d\vec l \times \hat r}}{{{r^2}}} \\
\left| {d\vec B} \right| = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{idl\sin \theta }}{{{r^2}}} \\
\]
2) As the loop is circular then,
\[\theta = {90^ \circ }\]
\[\sin \theta = 1\]
3) Putting this in the Biot-Savart’s law we will get,
\[\left| {d\vec B} \right| = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{idl}}{{{r^2}}}\]
4) If we think that the circular loop is composed of numbers of such small element dl, then we will get the magnetic intensity for all over the loop. So to get the total field we must sum up that is integrate the magnetic field all over the field.
\[
B = \int\limits_0^B {d\vec B} \\
B = \int {\dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{idl}}{{{r^2}}}} \\
B = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{i}{{{r^2}}}\int {dl} \\
\]
5) As the integration over dl returns the circumference of the loop then, you can write,
\[
\int {dl} = 2\pi r \\
B = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{i}{{{r^2}}}2\pi r \\
B = \dfrac{{{\mu _0}i}}{{2r}} \\
\]
Hence the magnetic field at the center of the circular coil is \[B = \dfrac{{{\mu _0}i}}{{2r}}\].
Note: Field due to a semi-circular coil is just half that of the circular coil.
\[B = \dfrac{{{\mu _0}i}}{{4r}}\]
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE