Answer
Verified
401.2k+ views
Hint: A wire carrying current has a magnetic field. The intensity of the magnetic field at any point is obtained by the Biot-Savart’s law.
This law in vector form can be written as
\[d\vec B = \dfrac{{{\mu _0}}}{{4\pi }}i\dfrac{{d\vec l \times \hat r}}{{{r^2}}}\]
Step by step solution:
1) Consider a current carrying circular loop having its center at O carrying current i. If dl is a small element at a distance r then, the magnetic field intensity on that point can be written using Biot-Savart’s law.
\[
d\vec B = \dfrac{{{\mu _0}}}{{4\pi }}i\dfrac{{d\vec l \times \hat r}}{{{r^2}}} \\
\left| {d\vec B} \right| = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{idl\sin \theta }}{{{r^2}}} \\
\]
2) As the loop is circular then,
\[\theta = {90^ \circ }\]
\[\sin \theta = 1\]
3) Putting this in the Biot-Savart’s law we will get,
\[\left| {d\vec B} \right| = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{idl}}{{{r^2}}}\]
4) If we think that the circular loop is composed of numbers of such small element dl, then we will get the magnetic intensity for all over the loop. So to get the total field we must sum up that is integrate the magnetic field all over the field.
\[
B = \int\limits_0^B {d\vec B} \\
B = \int {\dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{idl}}{{{r^2}}}} \\
B = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{i}{{{r^2}}}\int {dl} \\
\]
5) As the integration over dl returns the circumference of the loop then, you can write,
\[
\int {dl} = 2\pi r \\
B = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{i}{{{r^2}}}2\pi r \\
B = \dfrac{{{\mu _0}i}}{{2r}} \\
\]
Hence the magnetic field at the center of the circular coil is \[B = \dfrac{{{\mu _0}i}}{{2r}}\].
Note: Field due to a semi-circular coil is just half that of the circular coil.
\[B = \dfrac{{{\mu _0}i}}{{4r}}\]
This law in vector form can be written as
\[d\vec B = \dfrac{{{\mu _0}}}{{4\pi }}i\dfrac{{d\vec l \times \hat r}}{{{r^2}}}\]
Step by step solution:
1) Consider a current carrying circular loop having its center at O carrying current i. If dl is a small element at a distance r then, the magnetic field intensity on that point can be written using Biot-Savart’s law.
\[
d\vec B = \dfrac{{{\mu _0}}}{{4\pi }}i\dfrac{{d\vec l \times \hat r}}{{{r^2}}} \\
\left| {d\vec B} \right| = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{idl\sin \theta }}{{{r^2}}} \\
\]
2) As the loop is circular then,
\[\theta = {90^ \circ }\]
\[\sin \theta = 1\]
3) Putting this in the Biot-Savart’s law we will get,
\[\left| {d\vec B} \right| = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{idl}}{{{r^2}}}\]
4) If we think that the circular loop is composed of numbers of such small element dl, then we will get the magnetic intensity for all over the loop. So to get the total field we must sum up that is integrate the magnetic field all over the field.
\[
B = \int\limits_0^B {d\vec B} \\
B = \int {\dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{idl}}{{{r^2}}}} \\
B = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{i}{{{r^2}}}\int {dl} \\
\]
5) As the integration over dl returns the circumference of the loop then, you can write,
\[
\int {dl} = 2\pi r \\
B = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{i}{{{r^2}}}2\pi r \\
B = \dfrac{{{\mu _0}i}}{{2r}} \\
\]
Hence the magnetic field at the center of the circular coil is \[B = \dfrac{{{\mu _0}i}}{{2r}}\].
Note: Field due to a semi-circular coil is just half that of the circular coil.
\[B = \dfrac{{{\mu _0}i}}{{4r}}\]
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
Why is the cell called the structural and functional class 12 biology CBSE
Why dont two magnetic lines of force intersect with class 12 physics CBSE
How many sp2 and sp hybridized carbon atoms are present class 12 chemistry CBSE