
Derive de-Broglie’s equation.
Answer
430.9k+ views
15 likes
Hint: As you know, de-Broglie’s equation is one of the equations used to define the wave properties of matter. It is actually describing the wave nature of the electron.
Complete step by step answer: We know that electromagnetic radiation exhibits the dual nature of a particle and wave. Microscopic particles like electrons also possess this type of dual nature.
Let us derive the de-Broglie equation:
Very low mass particle moving at speed less than that of light behaves like a particle and wave. De-broglie derived an expression relating the mass of such smaller particles and its wavelength.
Plank’s quantum theory relates the energy of an electromagnetic wave to its wavelength or frequency.
………..(1)
Einstein related the energy of particle matter to its mass and velocity, as ………(2)
As the smaller particle exhibits dual nature, and energy being the same, de-Broglie equated both these relations for the particle moving with velocity ‘V’ as,
, where ‘h’ is the plank’s constant.
This equation relating the momentum of a particle with its wavelength is the de-Broglie equation and the wavelength calculated using this relation is the de-Broglie wavelength.
Additional Information:
Particle and wave nature of matter, however, looked contradictory as it was not possible to prove the existence of both properties in any single experiment. This is because of the fact that every experiment is normally based on some principle and results related to the principle are only reflected in that experiment and not the other.
Note: You should notice that both the particle nature and the wave nature are necessary to understand or describe the matter completely. Hence, particles and wave nature of matter are actually ‘complementary’ to each other. It is not necessary for both to be present at the same time though. The significance of de-Broglie relation is that it is more useful to microscopic, fundamental particles like electrons.
Complete step by step answer: We know that electromagnetic radiation exhibits the dual nature of a particle and wave. Microscopic particles like electrons also possess this type of dual nature.
Let us derive the de-Broglie equation:
Very low mass particle moving at speed less than that of light behaves like a particle and wave. De-broglie derived an expression relating the mass of such smaller particles and its wavelength.
Plank’s quantum theory relates the energy of an electromagnetic wave to its wavelength or frequency.
Einstein related the energy of particle matter to its mass and velocity, as
As the smaller particle exhibits dual nature, and energy being the same, de-Broglie equated both these relations for the particle moving with velocity ‘V’ as,
This equation relating the momentum of a particle with its wavelength is the de-Broglie equation and the wavelength calculated using this relation is the de-Broglie wavelength.
Additional Information:
Particle and wave nature of matter, however, looked contradictory as it was not possible to prove the existence of both properties in any single experiment. This is because of the fact that every experiment is normally based on some principle and results related to the principle are only reflected in that experiment and not the other.
Note: You should notice that both the particle nature and the wave nature are necessary to understand or describe the matter completely. Hence, particles and wave nature of matter are actually ‘complementary’ to each other. It is not necessary for both to be present at the same time though. The significance of de-Broglie relation is that it is more useful to microscopic, fundamental particles like electrons.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
₹ per year
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
