Answer
Verified
404.1k+ views
Hint: For making a lens of desired focal length, the lens maker formula is used. It has to be specified, the refractive index of the lens material, refractive index of the surroundings, and the radii of curvatures of two spheres of which the lens is a part of. We will use the expression for the refraction of lightwave on a spherical surface to find the required lens maker formula.
Formula used:
Refraction at first surface, $\dfrac{{{n}_{2}}}{{{v}_{1}}}-\dfrac{{{n}_{1}}}{u}=\dfrac{{{n}_{2}}-{{n}_{1}}}{{{R}_{1}}}$
Refraction at second surface, $\dfrac{{{n}_{1}}}{v}-\dfrac{{{n}_{2}}}{{{v}_{1}}}=\dfrac{{{n}_{1}}-{{n}_{2}}}{{{R}_{2}}}$
Complete step by step answer:
Lenses having different values of focal lengths are used for making various optical instruments. The focal length of an optical lens depends upon the refractive index of the material which was used to make the lens and the radii of curvatures of the two surfaces, of which the lens is a part of.
Assumptions for lens maker formula,
Let us consider a thin lens with two refracting surfaces having radii of curvatures ${{R}_{1}}$ and ${{R}_{2}}$. Let the refractive index of the surrounding be ${{n}_{1}}$ and that of the lens be ${{n}_{2}}$.
With the help of formula for refraction at a single spherical surface,
For the first surface, we have,
$\dfrac{{{n}_{2}}}{{{v}_{1}}}-\dfrac{{{n}_{1}}}{u}=\dfrac{{{n}_{2}}-{{n}_{1}}}{{{R}_{1}}}$
For the second surface, we have,
$\dfrac{{{n}_{1}}}{v}-\dfrac{{{n}_{2}}}{{{v}_{1}}}=\dfrac{{{n}_{1}}-{{n}_{2}}}{{{R}_{2}}}$
Adding the above two equations,
$\dfrac{{{n}_{1}}}{v}-\dfrac{{{n}_{1}}}{u}=\left( {{n}_{2}}-{{n}_{1}} \right)\left( \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right)$
$\dfrac{1}{v}-\dfrac{1}{u}=\left( \dfrac{{{n}_{2}}}{{{n}_{1}}}-1 \right)\left[ \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right]$
When $u=\infty $ and $v=f$
We get,
\[\dfrac{1}{f}=\left( \dfrac{{{n}_{2}}}{{{n}_{1}}}-1 \right)\left[ \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right]\]
Therefore,
\[\dfrac{1}{f}=\left( \mu -1 \right)\left( \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right)\]
Where, $\mu $ is the refractive index of the material.
The above equation is known as the Lens maker formula.
Lens manufacturers commonly take the help of the lens maker formula for manufacturing the lenses of the desired focal length.
Additional information:
In optics, the relation between the distance of an image $(v)$, the distance of an object $(u)$, and the focal length of the lens is given by the formula, called Lens maker formula. Lens formula is applicable for all types of lenses, Plano and Bi convex and Plano and Bi concave lenses. These lenses are assumed to have negligible thickness.
Expression for Lens maker formula:
$\dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f}$
Derivation for lens maker formula:
Consider a convex lens having an optical centre at $\text{O}$. Let $\text{F}$ be the principal focus of the lens and $f$ is the focal length of the lens. An object $\text{AB}$ is placed perpendicular to the principal axis of the lens at a distance beyond the focal length $f$ of the lens.
A real, inverted, and magnified image $\text{A }\!\!'\!\!\text{ B }\!\!'\!\!\text{ }$ of the object $\text{AB}$ is formed.
From the above figure,
$\vartriangle \text{ABO}$ is similar to $\vartriangle \text{A }\!\!'\!\!\text{ B }\!\!'\!\!\text{ O}$
Therefore,
$\dfrac{\text{A }\!\!'\!\!\text{ B }\!\!'\!\!\text{ }}{\text{AB}}\text{=}\dfrac{\text{OB }\!\!'\!\!\text{ }}{\text{OB}}$
Similarly,
$\vartriangle \text{A }\!\!'\!\!\text{ B }\!\!'\!\!\text{ F}$ is similar to $\vartriangle \text{OCF}$
Therefore,
$\dfrac{\text{A }\!\!'\!\!\text{ B }\!\!'\!\!\text{ }}{\text{OC}}\text{=}\dfrac{\text{FB}}{\text{OF}}$
Also, $\text{OC=AB}$
Thus,
$\dfrac{\text{A }\!\!'\!\!\text{ B }\!\!'\!\!\text{ }}{\text{OC}}\text{=}\dfrac{\text{FB }\!\!'\!\!\text{ }}{\text{OF}}$
Equating the above equations, we get,
$\dfrac{\text{OB }\!\!'\!\!\text{ }}{\text{OB}}\text{=}\dfrac{\text{FB }\!\!'\!\!\text{ }}{\text{OF}}$
$\text{FB }\!\!'\!\!\text{ = OB }\!\!'\!\!\text{ - OF}$
Therefore,
$\dfrac{\text{OB }\!\!'\!\!\text{ }}{\text{OB}}\text{=}\dfrac{\text{OB }\!\!'\!\!\text{ -OF}}{\text{OF}}$
Substituting the sign convention, we get,
$\begin{align}
& \text{OB}=-u \\
& \text{OB }\!\!'\!\!\text{ }=v \\
& \text{OF}=f \\
\end{align}$
$\dfrac{-v}{u}=\dfrac{v-f}{f}$
$\begin{align}
& vf=-uv+uf \\
& uv=uf-vf \\
\end{align}$
Diving both the sides by$uvf$,
$\dfrac{uv}{uvf}=\dfrac{uf}{uvf}-\dfrac{vf}{uvf}$
$\dfrac{1}{f}=\dfrac{1}{v}-\dfrac{1}{u}$
The above equation is known as Lens formula.
Note: While deriving the lens formula, it should be remembered that the image distance from the refraction at the first surface becomes the object distance for the refraction at the second surface since the light ray is passing undisturbed from the lens. Also, the refractive indices of the two spherical materials, of which the lens is a part of, can also be different. In the above derivation, we have taken the refractive indices of both the material as the same.
Formula used:
Refraction at first surface, $\dfrac{{{n}_{2}}}{{{v}_{1}}}-\dfrac{{{n}_{1}}}{u}=\dfrac{{{n}_{2}}-{{n}_{1}}}{{{R}_{1}}}$
Refraction at second surface, $\dfrac{{{n}_{1}}}{v}-\dfrac{{{n}_{2}}}{{{v}_{1}}}=\dfrac{{{n}_{1}}-{{n}_{2}}}{{{R}_{2}}}$
Complete step by step answer:
Lenses having different values of focal lengths are used for making various optical instruments. The focal length of an optical lens depends upon the refractive index of the material which was used to make the lens and the radii of curvatures of the two surfaces, of which the lens is a part of.
Assumptions for lens maker formula,
Let us consider a thin lens with two refracting surfaces having radii of curvatures ${{R}_{1}}$ and ${{R}_{2}}$. Let the refractive index of the surrounding be ${{n}_{1}}$ and that of the lens be ${{n}_{2}}$.
With the help of formula for refraction at a single spherical surface,
For the first surface, we have,
$\dfrac{{{n}_{2}}}{{{v}_{1}}}-\dfrac{{{n}_{1}}}{u}=\dfrac{{{n}_{2}}-{{n}_{1}}}{{{R}_{1}}}$
For the second surface, we have,
$\dfrac{{{n}_{1}}}{v}-\dfrac{{{n}_{2}}}{{{v}_{1}}}=\dfrac{{{n}_{1}}-{{n}_{2}}}{{{R}_{2}}}$
Adding the above two equations,
$\dfrac{{{n}_{1}}}{v}-\dfrac{{{n}_{1}}}{u}=\left( {{n}_{2}}-{{n}_{1}} \right)\left( \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right)$
$\dfrac{1}{v}-\dfrac{1}{u}=\left( \dfrac{{{n}_{2}}}{{{n}_{1}}}-1 \right)\left[ \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right]$
When $u=\infty $ and $v=f$
We get,
\[\dfrac{1}{f}=\left( \dfrac{{{n}_{2}}}{{{n}_{1}}}-1 \right)\left[ \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right]\]
Therefore,
\[\dfrac{1}{f}=\left( \mu -1 \right)\left( \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right)\]
Where, $\mu $ is the refractive index of the material.
The above equation is known as the Lens maker formula.
Lens manufacturers commonly take the help of the lens maker formula for manufacturing the lenses of the desired focal length.
Additional information:
In optics, the relation between the distance of an image $(v)$, the distance of an object $(u)$, and the focal length of the lens is given by the formula, called Lens maker formula. Lens formula is applicable for all types of lenses, Plano and Bi convex and Plano and Bi concave lenses. These lenses are assumed to have negligible thickness.
Expression for Lens maker formula:
$\dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f}$
Derivation for lens maker formula:
Consider a convex lens having an optical centre at $\text{O}$. Let $\text{F}$ be the principal focus of the lens and $f$ is the focal length of the lens. An object $\text{AB}$ is placed perpendicular to the principal axis of the lens at a distance beyond the focal length $f$ of the lens.
A real, inverted, and magnified image $\text{A }\!\!'\!\!\text{ B }\!\!'\!\!\text{ }$ of the object $\text{AB}$ is formed.
From the above figure,
$\vartriangle \text{ABO}$ is similar to $\vartriangle \text{A }\!\!'\!\!\text{ B }\!\!'\!\!\text{ O}$
Therefore,
$\dfrac{\text{A }\!\!'\!\!\text{ B }\!\!'\!\!\text{ }}{\text{AB}}\text{=}\dfrac{\text{OB }\!\!'\!\!\text{ }}{\text{OB}}$
Similarly,
$\vartriangle \text{A }\!\!'\!\!\text{ B }\!\!'\!\!\text{ F}$ is similar to $\vartriangle \text{OCF}$
Therefore,
$\dfrac{\text{A }\!\!'\!\!\text{ B }\!\!'\!\!\text{ }}{\text{OC}}\text{=}\dfrac{\text{FB}}{\text{OF}}$
Also, $\text{OC=AB}$
Thus,
$\dfrac{\text{A }\!\!'\!\!\text{ B }\!\!'\!\!\text{ }}{\text{OC}}\text{=}\dfrac{\text{FB }\!\!'\!\!\text{ }}{\text{OF}}$
Equating the above equations, we get,
$\dfrac{\text{OB }\!\!'\!\!\text{ }}{\text{OB}}\text{=}\dfrac{\text{FB }\!\!'\!\!\text{ }}{\text{OF}}$
$\text{FB }\!\!'\!\!\text{ = OB }\!\!'\!\!\text{ - OF}$
Therefore,
$\dfrac{\text{OB }\!\!'\!\!\text{ }}{\text{OB}}\text{=}\dfrac{\text{OB }\!\!'\!\!\text{ -OF}}{\text{OF}}$
Substituting the sign convention, we get,
$\begin{align}
& \text{OB}=-u \\
& \text{OB }\!\!'\!\!\text{ }=v \\
& \text{OF}=f \\
\end{align}$
$\dfrac{-v}{u}=\dfrac{v-f}{f}$
$\begin{align}
& vf=-uv+uf \\
& uv=uf-vf \\
\end{align}$
Diving both the sides by$uvf$,
$\dfrac{uv}{uvf}=\dfrac{uf}{uvf}-\dfrac{vf}{uvf}$
$\dfrac{1}{f}=\dfrac{1}{v}-\dfrac{1}{u}$
The above equation is known as Lens formula.
Note: While deriving the lens formula, it should be remembered that the image distance from the refraction at the first surface becomes the object distance for the refraction at the second surface since the light ray is passing undisturbed from the lens. Also, the refractive indices of the two spherical materials, of which the lens is a part of, can also be different. In the above derivation, we have taken the refractive indices of both the material as the same.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE