
Derive relation between and
Answer
138.9k+ views
Hint: Newton's law of gravitation states that the force between two unknown masses is directly proportional to the force acting between them. The force is inversely proportional to the square of distance between the masses. Also these masses experience acceleration due to gravity as well.
Complete step by step solution:
The acceleration of a body in free fall due to the massive body's gravity is g. The attraction force between two objects with a unit mass divided in some portion of this universe by a unit distance is G.
The gravity of any large body is g. The inertia on an object. A universal gravitational constant denoting G is the attraction force between any two masses divided by unit size. There is no proportional relationship between G and g. That implies that they are distinct bodies.
Let’s consider two bodies of masses and kept at distance from each other, now, according to Newton’s law of gravitation, we know that,
is the force between the two bodies
is the gravitational constant
is mass for first body
is mass of second body
is distance between two bodies
Let us consider that the first body is earth with mass , radius. Now the force acting along the body will be
is acceleration due to gravity
From the above two equations, we can write that,
Hence we have a relation between and .
Note: Although the relationship between g and G in physics can be expressed in a shape. Because of the gravity and the universal gravity, there is no relation between the acceleration and the G value. For some point in this world, the value of G is constant. G and g are not mutually based.
Complete step by step solution:
The acceleration of a body in free fall due to the massive body's gravity is g. The attraction force between two objects with a unit mass divided in some portion of this universe by a unit distance is G.
The gravity of any large body is g. The inertia on an object. A universal gravitational constant denoting G is the attraction force between any two masses divided by unit size. There is no proportional relationship between G and g. That implies that they are distinct bodies.
Let’s consider two bodies of masses
Let us consider that the first body is earth with mass
From the above two equations, we can write that,
Hence we have a relation between
Note: Although the relationship between g and G in physics can be expressed in a shape. Because of the gravity and the universal gravity, there is no relation between the acceleration and the G value. For some point in this world, the value of G is constant. G and g are not mutually based.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
