Answer
Verified
399.5k+ views
Hint: Mathematically, linear momentum is given by, \[p=mv\] and kinetic energy is given by, \[K.E.=\dfrac{1}{2}m{{v}^{2}}\]. Where,
\[m\]= mass of the body
\[v\]= velocity
\[p\]= linear momentum
\[K.E.\]= kinetic energy
Complete step by step Solution:
Linear momentum: Linear momentum is the quantity of motion of a moving body. Its magnitude is given by the product of mass and velocity of the body at a given time. It is given by, \[p=mv\]
Kinetic energy: Kinetic energy is defined as the energy possessed by a body because of its motion. It is given by, \[K.E.=\dfrac{1}{2}m{{v}^{2}}\]
Where symbols have their usual meanings.
Now, since the momentum is expressed as,
\[p=mv\]
On squaring both sides,
\[\Rightarrow {{p}^{2}}={{\left( mv \right)}^{2}}\]
On dividing by \[2m\] both sides,
\[\Rightarrow \dfrac{{{p}^{2}}}{2m}=\dfrac{1}{2}m{{v}^{2}}\]
As we know that the kinetic energy of a body is given by, \[K.E.=\dfrac{1}{2}m{{v}^{2}}\] so we can write the above equation as,
\[\Rightarrow \dfrac{{{p}^{2}}}{2m}=K.E.\]
\[\Rightarrow {{p}^{2}}=2m\times (K.E.)\]
On taking square root both sides,
\[\Rightarrow p=\sqrt{2m(K.E.)}\]
Hence, the relation between the linear momentum and the kinetic energy is, \[p=\sqrt{2m(K.E.)}\]
Additional Information:
Momentum is directly proportional to the object’s mass and its velocity. Thus, the greater an object’s mass or the greater its velocity, the greater will be its momentum.
Momentum, \[p\] is a vector quantity having the same direction as the velocity \[v\]. The SI unit for momentum is\[kg.m/s\]
Kinetic energy is the form of energy that an object or a particle possesses because of its motion. If work, which transfers energy, is done on an object by applying a net force, the object speeds up and thereby gains kinetic energy.
Kinetic energy, \[K.E.\] is a scalar quantity. The SI unit for kinetic energy is $\text{joule}$.
Note: Students should understand the physical significance of both the physical quantities i.e., linear momentum and kinetic energy with their units. Students need to memorize the basic mathematical expressions of both quantities so that by performing some mathematical operations they can get the required relation.
\[m\]= mass of the body
\[v\]= velocity
\[p\]= linear momentum
\[K.E.\]= kinetic energy
Complete step by step Solution:
Linear momentum: Linear momentum is the quantity of motion of a moving body. Its magnitude is given by the product of mass and velocity of the body at a given time. It is given by, \[p=mv\]
Kinetic energy: Kinetic energy is defined as the energy possessed by a body because of its motion. It is given by, \[K.E.=\dfrac{1}{2}m{{v}^{2}}\]
Where symbols have their usual meanings.
Now, since the momentum is expressed as,
\[p=mv\]
On squaring both sides,
\[\Rightarrow {{p}^{2}}={{\left( mv \right)}^{2}}\]
On dividing by \[2m\] both sides,
\[\Rightarrow \dfrac{{{p}^{2}}}{2m}=\dfrac{1}{2}m{{v}^{2}}\]
As we know that the kinetic energy of a body is given by, \[K.E.=\dfrac{1}{2}m{{v}^{2}}\] so we can write the above equation as,
\[\Rightarrow \dfrac{{{p}^{2}}}{2m}=K.E.\]
\[\Rightarrow {{p}^{2}}=2m\times (K.E.)\]
On taking square root both sides,
\[\Rightarrow p=\sqrt{2m(K.E.)}\]
Hence, the relation between the linear momentum and the kinetic energy is, \[p=\sqrt{2m(K.E.)}\]
Additional Information:
Momentum is directly proportional to the object’s mass and its velocity. Thus, the greater an object’s mass or the greater its velocity, the greater will be its momentum.
Momentum, \[p\] is a vector quantity having the same direction as the velocity \[v\]. The SI unit for momentum is\[kg.m/s\]
Kinetic energy is the form of energy that an object or a particle possesses because of its motion. If work, which transfers energy, is done on an object by applying a net force, the object speeds up and thereby gains kinetic energy.
Kinetic energy, \[K.E.\] is a scalar quantity. The SI unit for kinetic energy is $\text{joule}$.
Note: Students should understand the physical significance of both the physical quantities i.e., linear momentum and kinetic energy with their units. Students need to memorize the basic mathematical expressions of both quantities so that by performing some mathematical operations they can get the required relation.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
Which is the longest day and shortest night in the class 11 sst CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE