Answer
Verified
395.1k+ views
Hint: In order to answer this question, to derive the relation between $H\,and\,U$ , first of all we should know that what is the exact term is instead of $H\,and\,U$ . Then we should go through their chemical properties, and just compare the similarities to relate them.
Complete answer:
In the given question, we have to derive the relation between enthalpy \[(H)\] and internal energy $(U)$ .
Let ${H_1}$ be the enthalpy of the system in the initial state and ${H_f}$ be the enthalpy of the system in a final state. Let ${U_i}\,and\,{V_i}$ be the internal energy and volume in the initial state and ${U_f}\,and\,{V_f}$ be the internal energy and volume in a final state.
Now, as we know that,
$H = U + PV$
Therefore,
${H_i} = {U_i} + P{V_i}$ …..(i)
${H_f} = {U_f} + P{V_f}$ …..(ii)
Subtracting equation (i) from (ii), we have:
$\begin{gathered}
{H_f} - {H_i} = ({U_f} + P{V_f}) - ({U_i} + P{V_f}) \\
\Rightarrow {H_f} - {H_i} = ({U_f} - {U_i}) + P({V_f} - {V_i}) \\
\Rightarrow \Delta H = \Delta U + P\Delta V\,\,\,......(iii) \\
\end{gathered} $
Here, $\Delta U\,and\,P\Delta V$ are the change in internal energy and work energy respectively.
Hence, equation (iii) is the relationship between $H\,and\,U$ .
Note:
Heat effects measured at constant pressure indicate changes in enthalpy of a system and not in changes of internal energy of the system. Using calorimeters operating at constant pressure, the enthalpy change of a process can be measured directly.
Complete answer:
In the given question, we have to derive the relation between enthalpy \[(H)\] and internal energy $(U)$ .
Let ${H_1}$ be the enthalpy of the system in the initial state and ${H_f}$ be the enthalpy of the system in a final state. Let ${U_i}\,and\,{V_i}$ be the internal energy and volume in the initial state and ${U_f}\,and\,{V_f}$ be the internal energy and volume in a final state.
Now, as we know that,
$H = U + PV$
Therefore,
${H_i} = {U_i} + P{V_i}$ …..(i)
${H_f} = {U_f} + P{V_f}$ …..(ii)
Subtracting equation (i) from (ii), we have:
$\begin{gathered}
{H_f} - {H_i} = ({U_f} + P{V_f}) - ({U_i} + P{V_f}) \\
\Rightarrow {H_f} - {H_i} = ({U_f} - {U_i}) + P({V_f} - {V_i}) \\
\Rightarrow \Delta H = \Delta U + P\Delta V\,\,\,......(iii) \\
\end{gathered} $
Here, $\Delta U\,and\,P\Delta V$ are the change in internal energy and work energy respectively.
Hence, equation (iii) is the relationship between $H\,and\,U$ .
Note:
Heat effects measured at constant pressure indicate changes in enthalpy of a system and not in changes of internal energy of the system. Using calorimeters operating at constant pressure, the enthalpy change of a process can be measured directly.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE