Answer
Verified
453.9k+ views
Hint: We know that\[{{K}_{p}}\] = The equilibrium constant calculated from the partial pressures of a chemical reaction.
\[{{K}_{c}}\] = The ratio of the equilibrium concentrations of products over the equilibrium concentrations of reactants each raised to the power of their stoichiometric coefficients in a chemical reaction.
Complete step by step answer:
In the question it is given that derive the relation between \[{{K}_{p}}\] and \[{{K}_{c}}\].
Consider the following reversible chemical reaction,
\[aA+bB \leftrightharpoons cC+dD\]
The equilibrium constant for the above reaction should be expressed in terms of the concentration and expressed as follows.
\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]
In the above equation, equilibrium is involved between gaseous species, and then the concentrations should be expressed in terms of partial pressures of the gaseous substance involved in the reaction. The equilibrium constant in terms of partial pressures is as follows,
\[{{K}_{p}}=\dfrac{p_{{C}^{c}}\text{ }p_{{D}^{d}}}{p_{{A}^{a}}\text{ }p_{{B}^{b}}}\]
Here \[{{p}_{A}}\], \[{{p}_{B}}\], \[{{p}_{C}}\], \[{{p}_{D}}\] represents the partial pressures of the substance A, B, C and D respectively involved in the reaction. Assume that the gases are ideal, then the ideal gas equation is as follows.
PV = nRT
\[P=\dfrac{nRT}{V}\]
Where P = pressure
n = amount of gas in mol
V = Volume in \[{{m}^{3}}\]
T = temperature in Kelvin
\[\dfrac{n}{V}\] = concentration, C
Thus, at constant temperature, pressure of the gas P is directly proportional to its concentration C,
In general chemical reaction
\[aA+bB \leftrightharpoons cC+dD\]
The equilibrium constant is
\[{{K}_{p}}=\dfrac{p_{{C}^{c}}\text{ }p_{{D}^{d}}}{p_{{A}^{a}}\text{ }p_{{B}^{b}}}\]
Now, P = CRT
Hence,
\[{{p}_{A}}\] = [A] RT, where [A] is the molar concentration of A
In the same way
\[{{p}_{B}}\] = [B] RT
\[{{p}_{C}}\]= [C] RT
\[{{p}_{D}}\] = [D] RT
Here, [B], [C] and [D] are the molar concentration of B, C and D respectively.
Substituting the above values in the expression for \[{{K}_{p}}\]
${{K}_{p}}=\dfrac{[{{([C]RT)}^{c}}\text{ }{{([D]RT)}^{d}}]}{[{{([A]RT)}^{a}}\text{ }{{([B]RT)}^{b}}]}$
$\text{=}\dfrac{{{[C]}^{c}}{{[D]}^{d}}{{(RT)}^{c+d}}}{{{[A]}^{a}}{{[B]}^{b}}{{(RT)}^{a+b}}}\text{ }$
$\text{=}\dfrac{{{[C]}^{c}}{{[D]}^{d}}{{(RT)}^{c+d-a+b}}}{{{[A]}^{a}}{{[B]}^{b}}}$
$\text{=}{{\text{K}}_{\text{c}}}{{(RT)}^{c+d-a+b}}$
$\text{=}{{\text{K}}_{\text{c}}}{{(RT)}^{\Delta n}}$
Here ∆n = (c + d) – (a + b) , means number of moles of gaseous products – number of moles of gaseous reactants in a balanced chemical reaction.
Therefore the relation between \[{{K}_{p}}\] and \[{{K}_{c}}\] is
\[{{\text{K}}_{\text{p}}}\text{= }{{\text{K}}_{\text{c}}}{{(RT)}^{\Delta n}}\]
Note: In a reaction if volume remains constant at equilibrium then \[{{K}_{p}}\] is equal to \[{{K}_{c}}\]
\[{{K}_{p}}\] = \[{{K}_{c}}\]
To get the above relation, an equal number of moles of gas should be present on both sides of the chemical reaction.
\[{{K}_{c}}\] = The ratio of the equilibrium concentrations of products over the equilibrium concentrations of reactants each raised to the power of their stoichiometric coefficients in a chemical reaction.
Complete step by step answer:
In the question it is given that derive the relation between \[{{K}_{p}}\] and \[{{K}_{c}}\].
Consider the following reversible chemical reaction,
\[aA+bB \leftrightharpoons cC+dD\]
The equilibrium constant for the above reaction should be expressed in terms of the concentration and expressed as follows.
\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]
In the above equation, equilibrium is involved between gaseous species, and then the concentrations should be expressed in terms of partial pressures of the gaseous substance involved in the reaction. The equilibrium constant in terms of partial pressures is as follows,
\[{{K}_{p}}=\dfrac{p_{{C}^{c}}\text{ }p_{{D}^{d}}}{p_{{A}^{a}}\text{ }p_{{B}^{b}}}\]
Here \[{{p}_{A}}\], \[{{p}_{B}}\], \[{{p}_{C}}\], \[{{p}_{D}}\] represents the partial pressures of the substance A, B, C and D respectively involved in the reaction. Assume that the gases are ideal, then the ideal gas equation is as follows.
PV = nRT
\[P=\dfrac{nRT}{V}\]
Where P = pressure
n = amount of gas in mol
V = Volume in \[{{m}^{3}}\]
T = temperature in Kelvin
\[\dfrac{n}{V}\] = concentration, C
Thus, at constant temperature, pressure of the gas P is directly proportional to its concentration C,
In general chemical reaction
\[aA+bB \leftrightharpoons cC+dD\]
The equilibrium constant is
\[{{K}_{p}}=\dfrac{p_{{C}^{c}}\text{ }p_{{D}^{d}}}{p_{{A}^{a}}\text{ }p_{{B}^{b}}}\]
Now, P = CRT
Hence,
\[{{p}_{A}}\] = [A] RT, where [A] is the molar concentration of A
In the same way
\[{{p}_{B}}\] = [B] RT
\[{{p}_{C}}\]= [C] RT
\[{{p}_{D}}\] = [D] RT
Here, [B], [C] and [D] are the molar concentration of B, C and D respectively.
Substituting the above values in the expression for \[{{K}_{p}}\]
${{K}_{p}}=\dfrac{[{{([C]RT)}^{c}}\text{ }{{([D]RT)}^{d}}]}{[{{([A]RT)}^{a}}\text{ }{{([B]RT)}^{b}}]}$
$\text{=}\dfrac{{{[C]}^{c}}{{[D]}^{d}}{{(RT)}^{c+d}}}{{{[A]}^{a}}{{[B]}^{b}}{{(RT)}^{a+b}}}\text{ }$
$\text{=}\dfrac{{{[C]}^{c}}{{[D]}^{d}}{{(RT)}^{c+d-a+b}}}{{{[A]}^{a}}{{[B]}^{b}}}$
$\text{=}{{\text{K}}_{\text{c}}}{{(RT)}^{c+d-a+b}}$
$\text{=}{{\text{K}}_{\text{c}}}{{(RT)}^{\Delta n}}$
Here ∆n = (c + d) – (a + b) , means number of moles of gaseous products – number of moles of gaseous reactants in a balanced chemical reaction.
Therefore the relation between \[{{K}_{p}}\] and \[{{K}_{c}}\] is
\[{{\text{K}}_{\text{p}}}\text{= }{{\text{K}}_{\text{c}}}{{(RT)}^{\Delta n}}\]
Note: In a reaction if volume remains constant at equilibrium then \[{{K}_{p}}\] is equal to \[{{K}_{c}}\]
\[{{K}_{p}}\] = \[{{K}_{c}}\]
To get the above relation, an equal number of moles of gas should be present on both sides of the chemical reaction.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Write the difference between order and molecularity class 11 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What are noble gases Why are they also called inert class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between calcination and roasting class 11 chemistry CBSE