Answer
Verified
398.2k+ views
Hint: A compound microscope is a microscope which is constructed using two convex lenses, one of the lenses is kept near the eye while the other is kept near the object that is being viewed. The image formed by the objective lens serves as an object for the ocular lens.
Formula used:
Lens formula is given as
$\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$
where f represents the focal length, v and u represent the distance of image and object from the lens respectively.
Magnification of a lens can be calculated by the following formula:
$m = \dfrac{{h'}}{h} = \dfrac{{\text{v}}}{u}$
where h is the height of the object and u denotes the distance of the object from the lens while h’ is the height of the image of object and v denotes the distance of the image from the lens.
The total magnification due to objective lens and the eyepiece of compound microscope is given as
$m = {m_o}{m_e}$
where ${m_o}$ is the magnification due to the objective lens and ${m_e}$ is magnification due to the eye-piece.
Complete step by step answer:
A compound microscope can be constructed in the following way:
We have two convex lenses; one of the lenses is the objective lens that is kept near the object that is being viewed while the other lens is called the ocular lens or eyepiece which means that it is kept near the eye of the viewer. The image of the object formed by the objective lens is real, inverted and magnified. This image acts as an object for the second lens which forms an enlarged image which is virtual in nature. The image formed by the second lens is inverted with respect to the object and enlarged further.
Now we can calculate the magnification due to the objective lens as follows:
${m_o} = \dfrac{{h'}}{h}$
In the figure we notice that $\tan \theta = \dfrac{h}{{{f_0}}} = \dfrac{{h'}}{L}{\text{ }} \Rightarrow \dfrac{{h'}}{h} = \dfrac{L}{{{f_0}}}$. Using this, we get
${m_o} = \dfrac{L}{{{f_0}}}$
Now magnification due to eye piece is given as
${m_e} = \dfrac{D}{{{u_e}}} = 1 + \dfrac{D}{{{f_e}}}$ (Here we have used the lens formula)
Now the total magnification is given as
$m = {m_o}{m_e} = \left( {\dfrac{L}{{{f_0}}}} \right)\left( {1 + \dfrac{D}{{{f_e}}}} \right)$
This is the required magnification.
Note: In the final expression for magnification we notice that we have the focal lengths in the denominator. This implies that in order to obtain large magnification from the compound microscope, the focal lengths of the two lenses must be small.
Formula used:
Lens formula is given as
$\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$
where f represents the focal length, v and u represent the distance of image and object from the lens respectively.
Magnification of a lens can be calculated by the following formula:
$m = \dfrac{{h'}}{h} = \dfrac{{\text{v}}}{u}$
where h is the height of the object and u denotes the distance of the object from the lens while h’ is the height of the image of object and v denotes the distance of the image from the lens.
The total magnification due to objective lens and the eyepiece of compound microscope is given as
$m = {m_o}{m_e}$
where ${m_o}$ is the magnification due to the objective lens and ${m_e}$ is magnification due to the eye-piece.
Complete step by step answer:
A compound microscope can be constructed in the following way:
We have two convex lenses; one of the lenses is the objective lens that is kept near the object that is being viewed while the other lens is called the ocular lens or eyepiece which means that it is kept near the eye of the viewer. The image of the object formed by the objective lens is real, inverted and magnified. This image acts as an object for the second lens which forms an enlarged image which is virtual in nature. The image formed by the second lens is inverted with respect to the object and enlarged further.
Now we can calculate the magnification due to the objective lens as follows:
${m_o} = \dfrac{{h'}}{h}$
In the figure we notice that $\tan \theta = \dfrac{h}{{{f_0}}} = \dfrac{{h'}}{L}{\text{ }} \Rightarrow \dfrac{{h'}}{h} = \dfrac{L}{{{f_0}}}$. Using this, we get
${m_o} = \dfrac{L}{{{f_0}}}$
Now magnification due to eye piece is given as
${m_e} = \dfrac{D}{{{u_e}}} = 1 + \dfrac{D}{{{f_e}}}$ (Here we have used the lens formula)
Now the total magnification is given as
$m = {m_o}{m_e} = \left( {\dfrac{L}{{{f_0}}}} \right)\left( {1 + \dfrac{D}{{{f_e}}}} \right)$
This is the required magnification.
Note: In the final expression for magnification we notice that we have the focal lengths in the denominator. This implies that in order to obtain large magnification from the compound microscope, the focal lengths of the two lenses must be small.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE