Answer
Verified
447k+ views
Hint: In this problem we need to find the value of current gain. Current gain is the ratio of the collector current to the base current. In order to find the collector current and the base current, apply Kirchhoff’s voltage law in the base-emitter loop and in the collector loop.
Complete step by step solution:
Let us understand current gain and voltage gain first. The current gain in the common-base configuration is defined as the change in collector current divided by the change in emitter current, when base-to-collector voltage is constant. Similarly, the voltage gain for the common base amplifier is the ratio of output voltage to the input voltage.
Let ${I_B}$ and ${I_C}$ be base current and collector current respectively, taking $ + 5V$ as input voltage ${V_{in}}$ , the summation of voltages in the base-emitter loop gives
$8 \times {10^3} \times {I_B} + {V_{BE}} - 5V = 0$
We assume that the transistor is in saturation, this implies
${V_{BE}} = {V_{BE(sat)}} = 0.8V$
$ \Rightarrow 8 \times {10^3} \times {I_B} + 0.8V - 5V = 0$
$$ \Rightarrow {I_B} = \dfrac{{4.2V}}{{80 \times {{10}^3}}} = 0.0525mA$$ --equation $$1$$
The base current is $$0.0525mA$$
Applying Kirchhoff’s voltage law in the collector loop, we have
$$ \Rightarrow 5 \times {10^3} \times {I_C} + {V_{CE}} - 12\,V = 0$$
We assume that the transistor is in saturation, this implies
${V_{CE}} = {V_{CE(sat)}} = 0.12V$
Substituting this value in the above equation, we get
$$ \Rightarrow 5 \times {10^3} \times {I_C} + 0.12V - 12\,V = 0$$
$$ \Rightarrow {I_C} = \dfrac{{12 - 0.12}}{{5 \times {{10}^3}}} = 2.376mA$$
The emitter current is $$2.376mA$$
The current gain is given as
$\beta = \dfrac{{{I_c}}}{{{I_B}}}$
Substituting the values, we get
$$\beta = \dfrac{{2.376}}{{0.0525}} \approx 45.25$$
The minimum value of current gain $\beta $ (up to nearest integer) is $$45$$.
Note: In saturation mode, the transistor acts like a short circuit between the collector and the emitter. In saturation mode both the diodes in the transistor are forward biased. Be careful of the sign conventions when applying Kirchhoff’s voltage law. Remember that the current gain is the ratio of the collector current to the base current.
Complete step by step solution:
Let us understand current gain and voltage gain first. The current gain in the common-base configuration is defined as the change in collector current divided by the change in emitter current, when base-to-collector voltage is constant. Similarly, the voltage gain for the common base amplifier is the ratio of output voltage to the input voltage.
Let ${I_B}$ and ${I_C}$ be base current and collector current respectively, taking $ + 5V$ as input voltage ${V_{in}}$ , the summation of voltages in the base-emitter loop gives
$8 \times {10^3} \times {I_B} + {V_{BE}} - 5V = 0$
We assume that the transistor is in saturation, this implies
${V_{BE}} = {V_{BE(sat)}} = 0.8V$
$ \Rightarrow 8 \times {10^3} \times {I_B} + 0.8V - 5V = 0$
$$ \Rightarrow {I_B} = \dfrac{{4.2V}}{{80 \times {{10}^3}}} = 0.0525mA$$ --equation $$1$$
The base current is $$0.0525mA$$
Applying Kirchhoff’s voltage law in the collector loop, we have
$$ \Rightarrow 5 \times {10^3} \times {I_C} + {V_{CE}} - 12\,V = 0$$
We assume that the transistor is in saturation, this implies
${V_{CE}} = {V_{CE(sat)}} = 0.12V$
Substituting this value in the above equation, we get
$$ \Rightarrow 5 \times {10^3} \times {I_C} + 0.12V - 12\,V = 0$$
$$ \Rightarrow {I_C} = \dfrac{{12 - 0.12}}{{5 \times {{10}^3}}} = 2.376mA$$
The emitter current is $$2.376mA$$
The current gain is given as
$\beta = \dfrac{{{I_c}}}{{{I_B}}}$
Substituting the values, we get
$$\beta = \dfrac{{2.376}}{{0.0525}} \approx 45.25$$
The minimum value of current gain $\beta $ (up to nearest integer) is $$45$$.
Note: In saturation mode, the transistor acts like a short circuit between the collector and the emitter. In saturation mode both the diodes in the transistor are forward biased. Be careful of the sign conventions when applying Kirchhoff’s voltage law. Remember that the current gain is the ratio of the collector current to the base current.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE