Answer
Verified
399k+ views
Hint: To solve this question we need to know the concept of ratio test which will be used to find the…… of the series. For finding whether the series is convergent or divergent, we will firstly find the value of ${{a}_{n+1}}$ and ${{a}_{n}}$. Then check that whether the value of $\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|$ is less than, greater than or equal to $1$.
Complete step by step answer:
The question ask us to find whether the series given to us which is $1+\dfrac{x}{2}+\dfrac{{{x}^{2}}}{5}+\dfrac{{{x}^{3}}}{10}........\dfrac{{{x}^{n}}}{{{n}^{2}}+1}+.......$ it is convergent or divergent. The first step to solve this question will be to write the value of ${{a}_{n+1}}$ and ${{a}_{n}}$. On writing the expression in mathematical form we get:
$\Rightarrow {{a}_{n}}=\dfrac{{{x}^{n}}}{{{n}^{2}}+1}$
Now on writing the value of ${{a}_{n+1}}$ , where we will substitute the variable “n” with that of the variable”n+1”. So on doing this we get:
$\Rightarrow {{a}_{n+1}}=\dfrac{{{x}^{n+1}}}{{{\left( n+1 \right)}^{2}}+1}$
The next step will be to find $L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|$ , so on substituting the value on the given expression we get:
$\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{\dfrac{{{x}^{n+1}}}{{{(n+1)}^{2}}+1}}{\dfrac{{{x}^{n}}}{{{n}^{2}}+1}} \right|$
For solving the above expression we will cancel out the terms and get:
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}^{n+1}}\left( {{n}^{2}}+1 \right)}{\left( {{(n+1)}^{2}}+1 \right){{x}^{n}}} \right|\]
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}^{n}}\times x\left( {{n}^{2}}+1 \right)}{\left( {{(n+1)}^{2}}+1 \right){{x}^{n}}} \right|\]
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{x\left( {{n}^{2}}+1 \right)}{\left( {{(n+1)}^{2}}+1 \right)} \right|\]
To solve it further we will divide the numerator and the denominator with ${{n}^{2}}$ on doing this we get:
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{x\left( \dfrac{{{n}^{2}}}{{{n}^{2}}}+\dfrac{1}{{{n}^{2}}} \right)}{\left( \dfrac{{{(n+1)}^{2}}+1}{{{n}^{2}}} \right)} \right|\]
\[\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{x\left( \dfrac{{{n}^{2}}}{{{n}^{2}}}+\dfrac{1}{{{n}^{2}}} \right)}{\left( {{\left( \dfrac{n+1}{n} \right)}^{2}}+\dfrac{1}{{{n}^{2}}} \right)} \right|\]
Now on putting the limit in the above expression we get:
\[\Rightarrow L=\left| \dfrac{x\left( 1+\dfrac{1}{\infty } \right)}{\left( 1+\dfrac{1}{\infty } \right)} \right|\]
\[\Rightarrow L=\left| x \right|\]
For convergence the value of \[L<1\]which means the value of $\left| x \right|<1$ to find the value of $x$for which the series becomes convergent or divergent.
According to the ratio test the series will be convergent for $x\le 1$ and will be divergent for $x>1$.
$\therefore $ The series $1+\dfrac{x}{2}+\dfrac{{{x}^{2}}}{5}+\dfrac{{{x}^{3}}}{10}........\dfrac{{{x}^{n}}}{{{n}^{2}}+1}+.......$ will be convergent for $x\le 1$ and will be divergent for $x>1$.
Note: To find knowing the convergence and divergence of the series we need solve it using know the concept of ration test which states:
Let the value of $L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|$ be the condition then:
If $L<1$ , the series is convergent.
If $L>1$ , the series is divergent.
If $L=1$ , then the ratio test does not give any conclusion.
Complete step by step answer:
The question ask us to find whether the series given to us which is $1+\dfrac{x}{2}+\dfrac{{{x}^{2}}}{5}+\dfrac{{{x}^{3}}}{10}........\dfrac{{{x}^{n}}}{{{n}^{2}}+1}+.......$ it is convergent or divergent. The first step to solve this question will be to write the value of ${{a}_{n+1}}$ and ${{a}_{n}}$. On writing the expression in mathematical form we get:
$\Rightarrow {{a}_{n}}=\dfrac{{{x}^{n}}}{{{n}^{2}}+1}$
Now on writing the value of ${{a}_{n+1}}$ , where we will substitute the variable “n” with that of the variable”n+1”. So on doing this we get:
$\Rightarrow {{a}_{n+1}}=\dfrac{{{x}^{n+1}}}{{{\left( n+1 \right)}^{2}}+1}$
The next step will be to find $L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|$ , so on substituting the value on the given expression we get:
$\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{\dfrac{{{x}^{n+1}}}{{{(n+1)}^{2}}+1}}{\dfrac{{{x}^{n}}}{{{n}^{2}}+1}} \right|$
For solving the above expression we will cancel out the terms and get:
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}^{n+1}}\left( {{n}^{2}}+1 \right)}{\left( {{(n+1)}^{2}}+1 \right){{x}^{n}}} \right|\]
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}^{n}}\times x\left( {{n}^{2}}+1 \right)}{\left( {{(n+1)}^{2}}+1 \right){{x}^{n}}} \right|\]
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{x\left( {{n}^{2}}+1 \right)}{\left( {{(n+1)}^{2}}+1 \right)} \right|\]
To solve it further we will divide the numerator and the denominator with ${{n}^{2}}$ on doing this we get:
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{x\left( \dfrac{{{n}^{2}}}{{{n}^{2}}}+\dfrac{1}{{{n}^{2}}} \right)}{\left( \dfrac{{{(n+1)}^{2}}+1}{{{n}^{2}}} \right)} \right|\]
\[\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{x\left( \dfrac{{{n}^{2}}}{{{n}^{2}}}+\dfrac{1}{{{n}^{2}}} \right)}{\left( {{\left( \dfrac{n+1}{n} \right)}^{2}}+\dfrac{1}{{{n}^{2}}} \right)} \right|\]
Now on putting the limit in the above expression we get:
\[\Rightarrow L=\left| \dfrac{x\left( 1+\dfrac{1}{\infty } \right)}{\left( 1+\dfrac{1}{\infty } \right)} \right|\]
\[\Rightarrow L=\left| x \right|\]
For convergence the value of \[L<1\]which means the value of $\left| x \right|<1$ to find the value of $x$for which the series becomes convergent or divergent.
According to the ratio test the series will be convergent for $x\le 1$ and will be divergent for $x>1$.
$\therefore $ The series $1+\dfrac{x}{2}+\dfrac{{{x}^{2}}}{5}+\dfrac{{{x}^{3}}}{10}........\dfrac{{{x}^{n}}}{{{n}^{2}}+1}+.......$ will be convergent for $x\le 1$ and will be divergent for $x>1$.
Note: To find knowing the convergence and divergence of the series we need solve it using know the concept of ration test which states:
Let the value of $L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|$ be the condition then:
If $L<1$ , the series is convergent.
If $L>1$ , the series is divergent.
If $L=1$ , then the ratio test does not give any conclusion.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE