![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
How many diagonals does each of the following have?
$\left( a \right)$ A convex quadrilateral
$\left( b \right)$ A regular hexagon
$\left( c \right)$ A triangle.
Answer
511.2k+ views
Hint: In this question we have to find the number of diagonals for the specific given options, a diagonal is a line segment joining any two opposite corners of a polygon whether it is a square, rhombus, regular hexagon etc. The general formula for the number of diagonals of n-sided polygon is $\dfrac{{n\left( {n - 3} \right)}}{2}$. Use this concept to get the answer.
Complete step-by-step answer:
The general formula for number of diagonals (d) in any figure is
(n-3) multiply by the number of vertices and divide by 2.
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2}$
$\left( a \right)$ A convex quadrilateral
As we know in a convex quadrilateral there are four sides (see figure)
$ \Rightarrow n = 2$
Therefore number of diagonals in a convex quadrilateral is
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2} = \dfrac{{4\left( {4 - 3} \right)}}{2} = \dfrac{4}{2} = 2$
$\left( b \right)$ A regular hexagon
As we know in a convex quadrilateral there are six sides (see figure)
$ \Rightarrow n = 6$
Therefore number of diagonals in a convex quadrilateral is
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2} = \dfrac{{6\left( {6 - 3} \right)}}{2} = \dfrac{{6 \times 3}}{2} = 9$
$\left( c \right)$ A triangle.
As we know in a convex quadrilateral there are three sides (see figure)
$ \Rightarrow n = 3$
Therefore number of diagonals in a convex quadrilateral is
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2} = \dfrac{{3\left( {3 - 3} \right)}}{2} = \dfrac{0}{2} = 0$
So, these are the required diagonals in the following figures.
Note: Whenever we face such types of problems the key concept is the basic understanding of the definition of diagonal of a polygon. The gist of direct formula for diagonal of a n-sided polygon will eventually help you in getting the right track to reach the answer accurately.
Complete step-by-step answer:
![seo images](https://www.vedantu.com/question-sets/64a41887-6035-4121-ac1e-f396a6ebd6ea7120692499480997365.png)
The general formula for number of diagonals (d) in any figure is
(n-3) multiply by the number of vertices and divide by 2.
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2}$
$\left( a \right)$ A convex quadrilateral
As we know in a convex quadrilateral there are four sides (see figure)
$ \Rightarrow n = 2$
Therefore number of diagonals in a convex quadrilateral is
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2} = \dfrac{{4\left( {4 - 3} \right)}}{2} = \dfrac{4}{2} = 2$
$\left( b \right)$ A regular hexagon
As we know in a convex quadrilateral there are six sides (see figure)
$ \Rightarrow n = 6$
Therefore number of diagonals in a convex quadrilateral is
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2} = \dfrac{{6\left( {6 - 3} \right)}}{2} = \dfrac{{6 \times 3}}{2} = 9$
$\left( c \right)$ A triangle.
As we know in a convex quadrilateral there are three sides (see figure)
$ \Rightarrow n = 3$
Therefore number of diagonals in a convex quadrilateral is
$ \Rightarrow d = \dfrac{{n\left( {n - 3} \right)}}{2} = \dfrac{{3\left( {3 - 3} \right)}}{2} = \dfrac{0}{2} = 0$
So, these are the required diagonals in the following figures.
Note: Whenever we face such types of problems the key concept is the basic understanding of the definition of diagonal of a polygon. The gist of direct formula for diagonal of a n-sided polygon will eventually help you in getting the right track to reach the answer accurately.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The length and width of a rectangle are in ratio of class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The ratio of the income to the expenditure of a family class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you write 025 million in scientific notatio class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you convert 295 meters per second to kilometers class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write the following in Roman numerals 25819 class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many ounces are in 500 mL class 8 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which king started the organization of the Kumbh fair class 8 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is BLO What is the full form of BLO class 8 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Advantages and disadvantages of science
![arrow-right](/cdn/images/seo-templates/arrow-right.png)