Answer
Verified
391.2k+ views
Hint:When there is no net transfer of matter or energy between the body and its surroundings, Planck's law defines the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature $T$.
Complete answer:
The spectral-energy distribution of radiation emitted by a blackbody is explained by Max Planck's radiation law, a mathematical relationship (a hypothetical body that completely absorbs all radiant energy falling upon it, reaches some equilibrium temperature, and then re emits that energy as quickly as it absorbs it).
Planck believed that the sources of radiation are oscillating atoms, and that each oscillator's vibrational energy can take any of a number of distinct values, but never any value in between. Planck also believed that when an oscillator switches from one state of energy ${E_1}$ to \[{E_2}\] put it another way, the discrete amount of energy ${E_1} - {E_2}$ , or quantum of radiation, is equal to the product of the frequency of the radiation, represented by the Greek letter, and a constant $h$ now known as Planck's constant, which he measured from blackbody radiation data; i.e. ${E_1} - {E_2} = hv$.
For the energy radiated per unit volume by a cavity of a blackbody in the wavelength interval $\lambda $ to $\lambda + \Delta \lambda $ Planck's law for energy ${E_{_\lambda }}$ may be written in terms of Planck's constant $h$, the speed of light $\left( c \right)$, the Boltzmann constant $\left( k \right)$, and the absolute temperature,
$\left( T \right)$\[{E_\lambda } = \dfrac{{8\pi hc}}{{{\lambda ^5}}} \times \dfrac{1}{{\exp (hc/kT\lambda ) - 1}}\]
The emitted radiation's wavelength is inversely proportional to its frequency, or $\lambda = \dfrac{c}{v}$. The Planck constant's value is defined as $6.62607015 \times {10^{ - 34}} joule.\sec $
Note: The bulk of the radiation emitted by a blackbody at temperatures up to several hundred degrees is in the infrared region of the electromagnetic spectrum. At higher temperatures, the overall radiated energy rises, and the intensity peak of the emitted spectrum changes to shorter wavelengths, resulting in visible light being emitted in greater amounts.
Complete answer:
The spectral-energy distribution of radiation emitted by a blackbody is explained by Max Planck's radiation law, a mathematical relationship (a hypothetical body that completely absorbs all radiant energy falling upon it, reaches some equilibrium temperature, and then re emits that energy as quickly as it absorbs it).
Planck believed that the sources of radiation are oscillating atoms, and that each oscillator's vibrational energy can take any of a number of distinct values, but never any value in between. Planck also believed that when an oscillator switches from one state of energy ${E_1}$ to \[{E_2}\] put it another way, the discrete amount of energy ${E_1} - {E_2}$ , or quantum of radiation, is equal to the product of the frequency of the radiation, represented by the Greek letter, and a constant $h$ now known as Planck's constant, which he measured from blackbody radiation data; i.e. ${E_1} - {E_2} = hv$.
For the energy radiated per unit volume by a cavity of a blackbody in the wavelength interval $\lambda $ to $\lambda + \Delta \lambda $ Planck's law for energy ${E_{_\lambda }}$ may be written in terms of Planck's constant $h$, the speed of light $\left( c \right)$, the Boltzmann constant $\left( k \right)$, and the absolute temperature,
$\left( T \right)$\[{E_\lambda } = \dfrac{{8\pi hc}}{{{\lambda ^5}}} \times \dfrac{1}{{\exp (hc/kT\lambda ) - 1}}\]
The emitted radiation's wavelength is inversely proportional to its frequency, or $\lambda = \dfrac{c}{v}$. The Planck constant's value is defined as $6.62607015 \times {10^{ - 34}} joule.\sec $
Note: The bulk of the radiation emitted by a blackbody at temperatures up to several hundred degrees is in the infrared region of the electromagnetic spectrum. At higher temperatures, the overall radiated energy rises, and the intensity peak of the emitted spectrum changes to shorter wavelengths, resulting in visible light being emitted in greater amounts.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE