
What is the difference between direct and inverse proportion and how do I know which to use? What are real life examples?
Answer
401.7k+ views
Hint: In this question we have to tell the difference between direct and inverse proportions. We know that these both are comparison quantities, so we will first understand the difference between the both and then also understand with examples.
The symbol of directly proportion is
And, inversely proportion is represented is represented with
.
Complete step-by-step answer:
Let us first understand the definition of Direct proportion. We know in direct proportion, when one quantity increases the other quantity increases too. Similarly when one quantity decreases, the other quantity decreases too. So we can say that the corresponding quantity always remains constant.
Some real life examples of direct proportion are:
If we buy more packets of milk, it will cost more money.
If we have to travel further to travel, it will take more time..
Bigger area of floor requires more tiles/paint.
We can see that if we use more packets, it will directly affect money, i.e. more money is needed.
So in direct proportion, the ratio between matching quantities stays the same if they are divided. We can represent it symbolic form:
.
In inverse or indirect proportion, we can say that when one quantity increases the other quantity decreases too. When one quantity decreases the other quantity increases too.
Some of the examples of indirect proportion are:
If more people share a task, it will be completed in less time.
If we travel at a faster speed, it means that it will take less time.
If we pack sugar in smaller packets, then more packets will be needed for the same quantity.
Here we can see that if more people can work for a specified time, then time will be less consumed.
We can write the inverse proportion as follow:
.
So we have to consider which quantities are being compared and we have to use our common sense to decide how to relate them .
Hence this is the difference between inverse and direct proportionality with examples.
Note: Let us take an example: The value of is directly proportional to . We have been given . Now we have to find an equation relating and .
We have been given
, or we can write
, where is the constant proportionality.
By putting the values in expression we can write
.
It gives
.
So we will put this value in the expression:
.
From this we can understand the relation between and
The symbol of directly proportion is
And, inversely proportion is represented is represented with
Complete step-by-step answer:
Let us first understand the definition of Direct proportion. We know in direct proportion, when one quantity increases the other quantity increases too. Similarly when one quantity decreases, the other quantity decreases too. So we can say that the corresponding quantity always remains constant.
Some real life examples of direct proportion are:
If we buy more packets of milk, it will cost more money.
If we have to travel further to travel, it will take more time..
Bigger area of floor requires more tiles/paint.
We can see that if we use more packets, it will directly affect money, i.e. more money is needed.
So in direct proportion, the ratio between matching quantities stays the same if they are divided. We can represent it symbolic form:
In inverse or indirect proportion, we can say that when one quantity increases the other quantity decreases too. When one quantity decreases the other quantity increases too.
Some of the examples of indirect proportion are:
If more people share a task, it will be completed in less time.
If we travel at a faster speed, it means that it will take less time.
If we pack sugar in smaller packets, then more packets will be needed for the same quantity.
Here we can see that if more people can work for a specified time, then time will be less consumed.
We can write the inverse proportion as follow:
So we have to consider which quantities are being compared and we have to use our common sense to decide how to relate them .
Hence this is the difference between inverse and direct proportionality with examples.
Note: Let us take an example: The value of
We have been given
By putting the values in expression we can write
It gives
So we will put this value in the expression:
From this we can understand the relation between
Latest Vedantu courses for you
Grade 10 | CBSE | SCHOOL | English
Vedantu 10 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹35,000 per year
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
How many ounces are in 500 mL class 8 maths CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Advantages and disadvantages of science

10 slogans on organ donation class 8 english CBSE

The LCM and HCF of two rational numbers are equal Then class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
