Answer
Verified
400.5k+ views
Hint: In the above question, we are required to point out a difference between the given two logarithmic functions with different bases. So to solve this question requires theoretical knowledge regarding the logarithmic functions and its base. A logarithm function is the inverse of an exponential function (a function in which one term is raised to the power of another term is known as an exponential function). An exponential function is of the form $ a = {x^y} $ , so the logarithm function being the inverse of the exponential function is of the form $ y = {\log _x}a $ .
Complete step-by-step answer:
In the given problem, we have to differentiate between the two mathematical functions $ \log $ and $ \ln $ provided to us in the problem itself.
So, the $ \log $ function is the logarithm function with base being equal to $ 10 $ . So, it can also be written as $ {\log _{10}} $ to be clear and understandable.
On the other hand, the $ \ln $ function is the logarithmic function with base being equal to e, where e is the Euler’s number or constant. So, it can be written as $ {\log _e} $ to be clear. This $ \ln $ function is also called a natural logarithm function.
The standard base of logarithm functions is 10, that is, if we are given a function without any base like $ \log x $ then we take the base as 10.
But, when we are specifically given the base of the logarithm function as e, we have to take the function as $ \ln x $ .
Note: So, both the functions given to us in the question are logarithmic functions just with different bases. We should know when to use which function as it can create a misunderstanding and confusion otherwise. We should keep in mind an important rule that the base of the logarithm functions involved should be the same in all the calculations in order to apply any property of logarithm. There are several laws of the logarithm that make the calculations easier and help us evaluate the logarithm functions.
Complete step-by-step answer:
In the given problem, we have to differentiate between the two mathematical functions $ \log $ and $ \ln $ provided to us in the problem itself.
So, the $ \log $ function is the logarithm function with base being equal to $ 10 $ . So, it can also be written as $ {\log _{10}} $ to be clear and understandable.
On the other hand, the $ \ln $ function is the logarithmic function with base being equal to e, where e is the Euler’s number or constant. So, it can be written as $ {\log _e} $ to be clear. This $ \ln $ function is also called a natural logarithm function.
The standard base of logarithm functions is 10, that is, if we are given a function without any base like $ \log x $ then we take the base as 10.
But, when we are specifically given the base of the logarithm function as e, we have to take the function as $ \ln x $ .
Note: So, both the functions given to us in the question are logarithmic functions just with different bases. We should know when to use which function as it can create a misunderstanding and confusion otherwise. We should keep in mind an important rule that the base of the logarithm functions involved should be the same in all the calculations in order to apply any property of logarithm. There are several laws of the logarithm that make the calculations easier and help us evaluate the logarithm functions.
Recently Updated Pages
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
What happens to the gravitational force between two class 11 physics NEET
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE