Answer
Verified
455.4k+ views
Hint: To differentiate between consistent and inconsistent systems we can use either numerical way or graphical way. In graphical way, if graphs of given lines meet or intersect somewhere. Then lines are said to be consistent. But, if the graph of lines do not meet anywhere in the plane. Then lines are said to be inconsistent.
In numerical way there are two formulas. If lines satisfy condition $\dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}$then liens will be consistent and if they satisfy condition$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}$. Then lines will be inconsistent.
Complete step by step solution:
Let a pair of linear equations in two variable as:
\[{a_1}x + {b_1}y + {c_1} = 0\] and
\[{a_2}x + {b_2}y + {c_2} = 0\]
We can find the solution to these equations by graphical or algebraic method.
Consistent system
By drawing the graph of these two lines, following cases are possible:
(i) If both the lines intersect at a point, then there exists a unique solution to the pair of linear equations. So the pair of linear equations is said to be consistent
Lines intersect at point \[P\left( {x,\,\,y} \right)\]
Point P(x, y) represent unique solution
Algebraically, if \[\dfrac{{{a_1}}}{{{a_2}}}\,\, \ne \,\,\dfrac{{{b_1}}}{{{b_2}}}\] the linear equation is consistent.
(ii) If the lines of a pair of linear equations coincide with each other, then there exist infinitely many solutions since a line consists of infinite points. The pair of linear equations said to be consistent.
Algebraically,\[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}\]the pair of linear equation said to be consistent.
Inconsistent system
Consider the equations
\[{a_1}x + {b_1}y + {c_1} = 0\] and
\[{a_2}x + {b_2}y + {c_2} = 0\]
Let both the lines are parallel to each other, then there exist No solution because the lines never intersect
Algebraically, for such a case
\[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}\]
The pair of linear equations in the variables is said to be inconsistent.
Angle of elevation:
The term angle of elevation denotes the angle from the horizontal upward to an object. An observer's line of sight would be above the horizontal.
Angle of depression:
The term angle of depression denotes the angle from the horizontal downward to an object. An observer’s line of sight would be below the horizontal.
Note: The angle of elevation is when you are measuring the angle from the floor or the ground, and the angle of depression is when you are measuring from a ceiling. The only time the two angles are equal is if the ceiling and floor are parallel with each other. If you know your angle terms these are opposite interior angles.
In numerical way there are two formulas. If lines satisfy condition $\dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}$then liens will be consistent and if they satisfy condition$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}$. Then lines will be inconsistent.
Complete step by step solution:
Let a pair of linear equations in two variable as:
\[{a_1}x + {b_1}y + {c_1} = 0\] and
\[{a_2}x + {b_2}y + {c_2} = 0\]
We can find the solution to these equations by graphical or algebraic method.
Consistent system
By drawing the graph of these two lines, following cases are possible:
(i) If both the lines intersect at a point, then there exists a unique solution to the pair of linear equations. So the pair of linear equations is said to be consistent
Lines intersect at point \[P\left( {x,\,\,y} \right)\]
Point P(x, y) represent unique solution
Algebraically, if \[\dfrac{{{a_1}}}{{{a_2}}}\,\, \ne \,\,\dfrac{{{b_1}}}{{{b_2}}}\] the linear equation is consistent.
(ii) If the lines of a pair of linear equations coincide with each other, then there exist infinitely many solutions since a line consists of infinite points. The pair of linear equations said to be consistent.
Algebraically,\[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}\]the pair of linear equation said to be consistent.
Inconsistent system
Consider the equations
\[{a_1}x + {b_1}y + {c_1} = 0\] and
\[{a_2}x + {b_2}y + {c_2} = 0\]
Let both the lines are parallel to each other, then there exist No solution because the lines never intersect
Algebraically, for such a case
\[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}\]
The pair of linear equations in the variables is said to be inconsistent.
Angle of elevation:
The term angle of elevation denotes the angle from the horizontal upward to an object. An observer's line of sight would be above the horizontal.
Angle of depression:
The term angle of depression denotes the angle from the horizontal downward to an object. An observer’s line of sight would be below the horizontal.
Note: The angle of elevation is when you are measuring the angle from the floor or the ground, and the angle of depression is when you are measuring from a ceiling. The only time the two angles are equal is if the ceiling and floor are parallel with each other. If you know your angle terms these are opposite interior angles.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE