
How do you differentiate \[{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3}\] ?
Answer
519.3k+ views
Hint: Here we need to differentiate the given problem with respect to x. here we use the algebraic identity \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\] and then we differentiate it. We know that the differentiation of constant term is zero and differentiation of \[{x^n}\] is \[\dfrac{{d({x^n})}}{{dx}} = n.{x^{n - 1}}\] .
Complete step-by-step answer:
Given,
\[{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3}\] .
Now applying \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\] we have,
\[{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = {1^3} + {\left( {\dfrac{1}{x}} \right)^3} + 3\left( 1 \right)\left( {\dfrac{1}{x}} \right)\left( {1 + \dfrac{1}{x}} \right)\]
\[ = 1 + \dfrac{1}{{{x^3}}} + \dfrac{3}{x}\left( {1 + \dfrac{1}{x}} \right)\]
\[ = 1 + \dfrac{1}{{{x^3}}} + \dfrac{3}{x} + \dfrac{3}{{{x^2}}}\]
\[ = 1 + {x^{ - 3}} + 3{x^{ - 1}} + 3{x^{ - 2}}\]
Thus we have
\[{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = 1 + {x^{ - 3}} + 3{x^{ - 1}} + 3{x^{ - 2}}\]
Now differentiating with respect to ‘x’,
\[\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = \dfrac{d}{{dx}}\left( {1 + {x^{ - 3}} + 3{x^{ - 1}} + 3{x^{ - 2}}} \right)\]
By linear combination rule,
\[\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = \dfrac{d}{{dx}}\left( 1 \right) + \dfrac{d}{{dx}}\left( {{x^{ - 3}}} \right) + 3\dfrac{d}{{dx}}\left( {{x^{ - 1}}} \right) + 3\dfrac{d}{{dx}}\left( {{x^{ - 2}}} \right)\]
Differentiation of constant is zero,
\[\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = 0 + - 3{x^{ - 3 - 1}} + 3\left( { - 1.{x^{ - 1 - 1}}} \right) + 3\left( { - 2.{x^{ - 2 - 1}}} \right)\]
\[\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = - 3{x^{ - 4}} + 3\left( { - 1.{x^{ - 2}}} \right) + 3\left( { - 2.{x^{ - 3}}} \right)\]
\[\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = - 3{x^{ - 4}} - 3{x^{ - 2}} - 6.{x^{ - 3}}\] . This is the required result.
So, the correct answer is “$- 3{x^{ - 4}} - 3{x^{ - 2}} - 6.{x^{ - 3}} $”.
Note: \[ \bullet \] Linear combination rule: The linearity law is very important to emphasize its nature with alternate notation. Symbolically it is specified as \[h'(x) = af'(x) + bg'(x)\]
\[ \bullet \] Quotient rule: The derivative of one function divided by other is found by quotient rule such as \[{\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] ^1} = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right] }^2}}}\] .
\[ \bullet \] Product rule: When a derivative of a product of two function is to be found, then we use product rule that is \[\dfrac{{dy}}{{dx}} = u \times \dfrac{{dv}}{{dx}} + v \times \dfrac{{du}}{{dx}}\] .
\[ \bullet \] Chain rule: To find the derivative of composition function or function of a function, we use chain rule. That is \[fog'({x_0}) = [(f'og)({x_0})] g'({x_0})\] .
Complete step-by-step answer:
Given,
\[{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3}\] .
Now applying \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\] we have,
\[{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = {1^3} + {\left( {\dfrac{1}{x}} \right)^3} + 3\left( 1 \right)\left( {\dfrac{1}{x}} \right)\left( {1 + \dfrac{1}{x}} \right)\]
\[ = 1 + \dfrac{1}{{{x^3}}} + \dfrac{3}{x}\left( {1 + \dfrac{1}{x}} \right)\]
\[ = 1 + \dfrac{1}{{{x^3}}} + \dfrac{3}{x} + \dfrac{3}{{{x^2}}}\]
\[ = 1 + {x^{ - 3}} + 3{x^{ - 1}} + 3{x^{ - 2}}\]
Thus we have
\[{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = 1 + {x^{ - 3}} + 3{x^{ - 1}} + 3{x^{ - 2}}\]
Now differentiating with respect to ‘x’,
\[\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = \dfrac{d}{{dx}}\left( {1 + {x^{ - 3}} + 3{x^{ - 1}} + 3{x^{ - 2}}} \right)\]
By linear combination rule,
\[\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = \dfrac{d}{{dx}}\left( 1 \right) + \dfrac{d}{{dx}}\left( {{x^{ - 3}}} \right) + 3\dfrac{d}{{dx}}\left( {{x^{ - 1}}} \right) + 3\dfrac{d}{{dx}}\left( {{x^{ - 2}}} \right)\]
Differentiation of constant is zero,
\[\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = 0 + - 3{x^{ - 3 - 1}} + 3\left( { - 1.{x^{ - 1 - 1}}} \right) + 3\left( { - 2.{x^{ - 2 - 1}}} \right)\]
\[\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = - 3{x^{ - 4}} + 3\left( { - 1.{x^{ - 2}}} \right) + 3\left( { - 2.{x^{ - 3}}} \right)\]
\[\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = - 3{x^{ - 4}} - 3{x^{ - 2}} - 6.{x^{ - 3}}\] . This is the required result.
So, the correct answer is “$- 3{x^{ - 4}} - 3{x^{ - 2}} - 6.{x^{ - 3}} $”.
Note: \[ \bullet \] Linear combination rule: The linearity law is very important to emphasize its nature with alternate notation. Symbolically it is specified as \[h'(x) = af'(x) + bg'(x)\]
\[ \bullet \] Quotient rule: The derivative of one function divided by other is found by quotient rule such as \[{\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] ^1} = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right] }^2}}}\] .
\[ \bullet \] Product rule: When a derivative of a product of two function is to be found, then we use product rule that is \[\dfrac{{dy}}{{dx}} = u \times \dfrac{{dv}}{{dx}} + v \times \dfrac{{du}}{{dx}}\] .
\[ \bullet \] Chain rule: To find the derivative of composition function or function of a function, we use chain rule. That is \[fog'({x_0}) = [(f'og)({x_0})] g'({x_0})\] .
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which state in India is known as the Granary of India class 12 social science CBSE

